P(k2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
分析 方差反映一組數(shù)據(jù)的波動(dòng)大小,將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;線性回歸方程$\widehat{y}$=bx+a過(guò)樣本中心點(diǎn),曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有一一對(duì)應(yīng)關(guān)系,有一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13.079,則其兩個(gè)變量間有關(guān)系的可能性是99.9%,選出正確的,得到結(jié)果.
解答 解:①、方差反映一組數(shù)據(jù)的波動(dòng)大小,將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變,①正確;
②、線性回歸方程$\widehat{y}$=bx+a必過(guò)樣本中心點(diǎn),故②正確.
③、曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有一一對(duì)應(yīng)關(guān)系,故③不正確,
④、有一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13.079,則其兩個(gè)變量間有關(guān)系的可能性是99.9%,故④不正確,
故①正確,②正確.③④不正確.綜上可知有兩個(gè)說(shuō)法是正確的,
故選:C.
點(diǎn)評(píng) 本題考查線性回歸方程、獨(dú)立性檢驗(yàn)、方差的變化特點(diǎn)、相關(guān)關(guān)系,注意分析,本題不需要計(jì)算,只要理解概念就可以得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4,$\frac{π}{3}$ | B. | 4,$\frac{2π}{3}$ | C. | 2,$\frac{π}{3}$ | D. | 2,$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 1 | C. | $3-\sqrt{2}$ | D. | $3+\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-2) | B. | (-∞,-2] | C. | (-∞,-4) | D. | (-∞,-4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{7}$ | B. | $\sqrt{30}$ | C. | $\frac{\sqrt{15}}{2}$ | D. | $\frac{\sqrt{30}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 從等高條形圖中可以精確地判斷兩個(gè)分類(lèi)變量是否有關(guān)系 | |
B. | 從等高條例形圖中可以看出兩個(gè)變量頻數(shù)的相對(duì)大小 | |
C. | 從等高條形圖可以粗略地看出兩個(gè)分類(lèi)變量是否有關(guān)系 | |
D. | 以上說(shuō)法都不對(duì) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com