1.曲線y=$\sqrt{x}$和直線y=x圍成的圖形面積是$\frac{1}{6}$.

分析 首先求出交點,然后利用定積分表示曲邊梯形的面積,計算求面積.

解答 解:曲線$y=\sqrt{x}$和直線y=x交點為:(1,1),所以圍成的圖形面積為${∫}_{0}^{1}(\sqrt{x}-x)dx$=($\frac{2}{3}{x}^{\frac{3}{2}}-\frac{1}{2}{x}^{2}$)|${\;}_{0}^{1}$=$\frac{1}{6}$;
故答案為:$\frac{1}{6}$.

點評 本題考查了定積分的意義求曲邊梯形,關鍵是正確利用定積分表示面積.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.若關于x的不等式組$\left\{\begin{array}{l}{{x}^{3}+3{x}^{2}-x-3>0}\\{{x}^{2}-2ax-1≤0}\end{array}\right.$(a>0)的整數(shù)解有且僅有一個,則a的取值范圍為(  )
A.[$\frac{3}{4}$,$\frac{4}{3}$]B.[$\frac{3}{4}$,$\frac{4}{3}$)C.($\frac{3}{4}$,$\frac{4}{3}$)D.($\frac{3}{4}$,$\frac{4}{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若x,y滿足x2-2xy+3y2=4,則$\frac{1}{{x}^{2}+{y}^{2}}$的最大值與最小值的和是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知等差數(shù)列{an}前n項的和為Sn,且(2n-1)Sn+1-(2n+1)Sn=4n2-1(n∈N
(1)求a1;
(2)求Sn,an
(3)設bn=|an-30|,求{bn}的前n項的和為Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.數(shù)列{an}中,2Sn=n2+n.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=2an•an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=-$\frac{{x}^{2}+2x+4}{x}$,g(x)=lnx-$\frac{1}{2}$x2+$\frac{9}{2}$,實數(shù)a,b滿足a<b<0,若?x1∈[a,b],?x2∈(0,+∞),使得f(x1)=g(x2)成立,則b-a的最大值為( 。
A.3$\sqrt{2}$B.4C.4$\sqrt{3}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.各項均不相等的等差數(shù)列{an}前n項和為Sn,已知S5=40,且a1,a3,a7成等比數(shù)列.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=(-1)n$\frac{2n+3}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.點P是在△ABC的內心,已知AB=3,AC=4,∠A=90°.存在實數(shù)λ,μ,使$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則( 。
A.λ=$\frac{1}{3}$,μ=$\frac{1}{4}$B.λ=$\frac{1}{3}$,μ=$\frac{2}{9}$C.λ=$\frac{1}{2}$,μ=$\frac{1}{3}$D.λ=$\frac{1}{4}$,μ=$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知i為虛數(shù)單位,復數(shù)z=-$\frac{1}{3}$+$\frac{2\sqrt{2}}{3}$i的共軛復數(shù)為$\overline{z}$,則$\overline{z}$的虛部為( 。
A.$\frac{2\sqrt{2}}{3}$B.-$\frac{2\sqrt{2}}{3}$C.$\frac{2\sqrt{2}}{3}$iD.-$\frac{2\sqrt{2}}{3}$i

查看答案和解析>>

同步練習冊答案