【題目】已如橢圓的左、右焦點分別為、,上的動點.

1)若,設點的橫坐標為,試用解析式將表示成的函數(shù);

2)試根據(jù)的不同取值,討論滿足為等腰銳角三角形的點的個數(shù).

【答案】1)見解析;(2)見解析

【解析】

1)設,寫出橢圓的方程及的坐標,利用兩點間的距離公式求出的表達式,點P坐標代入橢圓方程用表示出,即可進一步將表示成的函數(shù);(2)作出圖1至圖5的圖象,其中圖2與圖4為臨界情況,分別求出圖2與圖4所對應的b值,即可得出結論.

1)設,其中,,由得左焦點,

;

2)圖1至圖5分別對應點為2個,2個,6個,4個,4個的情況,其中圖2與圖4為臨界情況,

如圖2為等腰直角三角形(),

,則,

,又,可得,解得,則;

如圖4為等腰直角三角形(),由,

,所以.

所以①,點的個數(shù)為2;②,點的個數(shù)為6

,點的個數(shù)為4

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,的中點,底面,.

1)求證:平面;

2)求鈍二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為函數(shù)的導函數(shù).

(1),函數(shù)處的切線方程為,求a的值;

(2)若曲線上存在兩條互相平行的切線,其傾斜角為銳角,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】人的正常體溫在之間,下圖是一位病人在治療期間的體溫變化圖.

現(xiàn)有下述四個結論:

此病人已明顯好轉;

治療期間的體溫極差小于;

從每8小時的變化來看,250~8時體溫最穩(wěn)定;

3228時開始,每8小時量一次體溫,若體溫不低于就服用退燒藥,根據(jù)圖中信息可知該病人服用了3次退燒藥.

其中所有正確結論的編號是(

A.③④B.②③C.①②④D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,一單位圓的圓心的初始位置在,此時圓上一點P的位置在,圓在x軸上沿正向滾動.當圓滾動到圓心位于時,的坐標為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=x2+2alnx.

(1)若函數(shù)fx)的圖象在(2f2))處的切線斜率為1,求實數(shù)a的值;

(2)若函數(shù)[12]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設無窮數(shù)列的前項和為,已知,

(1)求的值;

(2)求數(shù)列的通項公式;

(3)是否存在數(shù)列的一個無窮子數(shù)列,使對一切均成立?若存在,請寫出數(shù)列的所有通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足;數(shù)列的前項和為,且滿足

(1)求數(shù)列的通項公式;

(2)求數(shù)列的通項公式;

(3)是否存在正整數(shù),使得恰為數(shù)列中的一項?若存在,求滿足要求的那幾項;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,其焦點與雙曲線的焦點重合,且橢圓的短軸的兩個端點與其一個焦點構成正三角形.

(1)求橢圓的方程;

(2)過雙曲線的右頂點作直線與橢圓交于不同的兩點.設,當為定值時,求的值;

查看答案和解析>>

同步練習冊答案