【題目】已如橢圓的左、右焦點分別為、,為上的動點.
(1)若,設(shè)點的橫坐標(biāo)為,試用解析式將表示成的函數(shù);
(2)試根據(jù)的不同取值,討論滿足為等腰銳角三角形的點的個數(shù).
【答案】(1)見解析;(2)見解析
【解析】
(1)設(shè),寫出橢圓的方程及的坐標(biāo),利用兩點間的距離公式求出的表達(dá)式,點P坐標(biāo)代入橢圓方程用表示出,即可進一步將表示成的函數(shù);(2)作出圖1至圖5的圖象,其中圖2與圖4為臨界情況,分別求出圖2與圖4所對應(yīng)的b值,即可得出結(jié)論.
(1)設(shè),其中,,由得左焦點,
則
;
(2)圖1至圖5分別對應(yīng)點為2個,2個,6個,4個,4個的情況,其中圖2與圖4為臨界情況,
如圖2:為等腰直角三角形(),
設(shè),則,
,,又,可得,解得,則;
如圖4:為等腰直角三角形(),由得,
又,所以.
所以①,點的個數(shù)為2;②,點的個數(shù)為6;
③,點的個數(shù)為4.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為函數(shù)的導(dǎo)函數(shù).
(1)若,函數(shù)在處的切線方程為,求a、的值;
(2)若曲線上存在兩條互相平行的切線,其傾斜角為銳角,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】人的正常體溫在至之間,下圖是一位病人在治療期間的體溫變化圖.
現(xiàn)有下述四個結(jié)論:
①此病人已明顯好轉(zhuǎn);
②治療期間的體溫極差小于;
③從每8小時的變化來看,25日0時~8時體溫最穩(wěn)定;
④從3月22日8時開始,每8小時量一次體溫,若體溫不低于就服用退燒藥,根據(jù)圖中信息可知該病人服用了3次退燒藥.
其中所有正確結(jié)論的編號是( )
A.③④B.②③C.①②④D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,一單位圓的圓心的初始位置在,此時圓上一點P的位置在,圓在x軸上沿正向滾動.當(dāng)圓滾動到圓心位于時,的坐標(biāo)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2alnx.
(1)若函數(shù)f(x)的圖象在(2,f(2))處的切線斜率為1,求實數(shù)a的值;
(2)若函數(shù)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)無窮數(shù)列的前項和為,已知,.
(1)求的值;
(2)求數(shù)列的通項公式;
(3)是否存在數(shù)列的一個無窮子數(shù)列,使對一切均成立?若存在,請寫出數(shù)列的所有通項公式;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且滿足;數(shù)列的前項和為,且滿足,,.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的通項公式;
(3)是否存在正整數(shù),使得恰為數(shù)列中的一項?若存在,求滿足要求的那幾項;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點,其焦點與雙曲線的焦點重合,且橢圓的短軸的兩個端點與其一個焦點構(gòu)成正三角形.
(1)求橢圓的方程;
(2)過雙曲線的右頂點作直線與橢圓交于不同的兩點.設(shè),當(dāng)為定值時,求的值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com