7.已知函數(shù)f(x)=ax-x2-lnx,若函數(shù)f(x)存在極值,且所有極值之和小于5+ln2,則實(shí)數(shù)a的取值范圍是(2$\sqrt{2}$,4).

分析 由f(x)存在極值,得到其導(dǎo)數(shù)值在(0,+∞)上有根,設(shè)出方程的根,由根與系數(shù)的關(guān)系,得到不等式解出即可.

解答 解:f(x)=-$\frac{{2x}^{2}-ax+1}{x}$,
∵f(x)存在極值,
∴f′(x)=0在(0,+∞)上有根,
即方程2x2-ax+1=0在(0,+∞)上有根.
設(shè)方程2x2-ax+1=0的兩根為x1,x2,
由韋達(dá)定理得:$\left\{\begin{array}{l}{{x}_{1}{•x}_{2}=\frac{1}{2}>0}\\{{x}_{1}{+x}_{2}=\frac{a}{2}}\end{array}\right.$,
所以方程的根必為兩不等正根.
f(x1)+f(x2)=a(x1+x2)-(x12+x22)-(lnx1+lnx2
=$\frac{{a}^{2}}{2}$-$\frac{{a}^{2}}{4}$+1-ln$\frac{1}{2}$<5-ln$\frac{1}{2}$,∴a2<16,-4<a<4,
由△=a2-8>0,解得:a>2$\sqrt{2}$,
故所求a的取值范圍為(2$\sqrt{2}$,4),
故答案為:(2$\sqrt{2}$,4)

點(diǎn)評(píng) 本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,一元二次方程根與系數(shù)的關(guān)系,本題屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.等比數(shù)列{an}各項(xiàng)為正,a3,a5,-a4成等差數(shù)列,Sn為{an}的前n項(xiàng)和,則$\frac{{S}_{6}}{{S}_{3}}$=$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)傾斜角為60°的直線l過點(diǎn)(1,0)且與圓C:x2+y2-4x=0相交,則圓C的半徑為2;圓心到直線l的距離是$\frac{{\sqrt{3}}}{2}$;直線l被圓截得的弦長(zhǎng)為$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=2ex+$\frac{1}{2}a{x^2}$+ax+1有兩個(gè)極值,則實(shí)數(shù)a的取值范圍為a<-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.3e,π3,3π,e3這四個(gè)數(shù)中最大的數(shù)是3π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若三棱錐P-ABC的四個(gè)頂點(diǎn)在同一個(gè)球面上,PA⊥平面ABC,AB⊥BC,且PA=AB=BC=$\sqrt{2}$,則該球的體積等于( 。
A.$\sqrt{6}$πB.2$\sqrt{2}$πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知幾何體O-ABCD的底面ABCD是邊長(zhǎng)為$\sqrt{3}$的正的方形,且該幾何體體積的最大值為$\frac{{3\sqrt{2}}}{2}$,則該幾何體外接球的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.一個(gè)幾何體的三視圖如圖,則該幾何體的表面積為( 。
A.28+4$\sqrt{5}$B.24+2$\sqrt{5}$C.18+4$\sqrt{5}$D.18+2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)f(x)=cos(x+$\frac{π}{2}$)在其定義域上是( 。
A.奇函數(shù)B.偶函數(shù)
C.既非奇函數(shù)也非偶函數(shù)D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案