2.一艘客輪在航海中遇險(xiǎn),發(fā)出求救信號(hào).在遇險(xiǎn)地點(diǎn)A南偏西45°方向10海里的B處有一艘海難搜救艇收到求救信號(hào)后立即偵查,發(fā)現(xiàn)遇險(xiǎn)客輪的航行方向?yàn)槟掀珫|75°,正以每小時(shí)9海里的速度向一小島靠近.已知海難搜救艇的最大速度為每小時(shí)21海里.
(1)為了在最短的時(shí)間內(nèi)追上客輪,求海難搜救艇追上客輪所需的時(shí)間;
(2)若最短時(shí)間內(nèi)兩船在C處相遇,如圖,在△ABC中,求角B的正弦值.

分析 (1)設(shè)搜救艇追上客輪所需時(shí)間為t小時(shí),兩船在C處相遇.由余弦定理得:BC2=AB2+AC2-2AB•AC•cos∠BAC,可得t的方程,即可得出結(jié)論;
(2)利用正弦定理,即可得出結(jié)論.

解答 解:(1)設(shè)搜救艇追上客輪所需時(shí)間為t小時(shí),兩船在C處相遇.
在△ABC中,∠BAC=45°+75°=120°,AB=10,AC=9t,BC=21t.
由余弦定理得:BC2=AB2+AC2-2AB•AC•cos∠BAC,
所以${(21t)^2}={10^2}+{(9t)^2}-2×10×9t×(-\frac{1}{2})$,
化簡(jiǎn)得36t2-9t-10=0,解得$t=\frac{2}{3}$或$t=-\frac{5}{12}$(舍去).
所以,海難搜救艇追上客輪所需時(shí)間為$\frac{2}{3}$小時(shí).
(2)由$AC=9×\frac{2}{3}=6$,$BC=21×\frac{2}{3}=14$.
在△ABC中,由正弦定理得$sinB=\frac{AC•sin∠BAC}{BC}=\frac{{6•sin{{120}°}}}{14}=\frac{{6×\frac{{\sqrt{3}}}{2}}}{14}=\frac{{3\sqrt{3}}}{14}$.
所以角B的正弦值為$\frac{{3\sqrt{3}}}{14}$.

點(diǎn)評(píng) 本題考查了正弦定理與余弦定理,考查特殊角的三角函數(shù).準(zhǔn)確找出題中的方向角是解題的關(guān)鍵之處.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(x)=|x-1|+|x+2|+|x+P|的最小值為3,則實(shí)數(shù)P的取值范圍是(  )
A.(-∞,-2)B.(1,+∞)C.[-2,1]D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.由xy=1,y=x,x=3所圍成的封閉區(qū)域的面積為( 。
A.2ln3B.2+ln3C.4-2ln3D.4-ln3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)銳角△ABC的三內(nèi)角A,B,C,所對(duì)邊的邊長(zhǎng)分別為a,b,c,且a=1,B=2A,則b的取值范圍為$(\sqrt{2},\sqrt{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.向量$\overrightarrow{AB}$與$\overrightarrow{CD}$共線是A,B,C,D四點(diǎn)共線的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在△ABC中,∠BAC=90°,以AB為直徑的⊙O交BC于點(diǎn)D,E是邊AC上一點(diǎn),BE與⊙O交于點(diǎn)F,連接DF.
(1)證明:C,D,F(xiàn),E四點(diǎn)共圓;
(2)若EF=3,AE=5,求BD•BC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知f(x)=ax+b的圖象過(guò)點(diǎn)(1,7)和(0,4),則f(x)的表達(dá)式是( 。
A.f(x)=3x+4B.f(x)=4x+3C.f(x)=2x+5D.f(x)=5x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=cos($\frac{π}{3}$+x)cos($\frac{π}{3}$-x)-sinxcosx+$\frac{1}{4}$.
(1)化簡(jiǎn)f(x)的解析式,并寫出f(x)的最小正周期;
(2)求當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)直線l1:(a-1)x-4y=1,l2:(a+1)x+3y=2,l3:x-2y=3.
(1)若直線l1的傾斜角為135°,求實(shí)數(shù)a的值;
(2)若l2∥l3,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案