19.在△ABC中,“A>$\frac{π}{3}$”是“sinA>$\frac{\sqrt{3}}{2}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 由sinA>$\frac{\sqrt{3}}{2}$?$\frac{π}{3}<A<\frac{2π}{3}$.即可判斷出結(jié)論.

解答 解:取A=$\frac{2π}{3}$,則sinA=$\frac{\sqrt{3}}{2}$,
由sinA>$\frac{\sqrt{3}}{2}$?$\frac{π}{3}<A<\frac{2π}{3}$.
∴“A>$\frac{π}{3}$”是“sinA>$\frac{\sqrt{3}}{2}$”的必要不充分條件.
故選:B.

點(diǎn)評(píng) 本題考查了三角函數(shù)的單調(diào)性與求值、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=x2-alnx(常數(shù)a>0),函數(shù)f(x)在區(qū)間(1,ea)上有兩個(gè)零點(diǎn),則a的取值范圍是(2e,+∞)(e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=loga|x-1|在(-∞,1)上單調(diào)遞增,則f(a+2)與f(3)的大小關(guān)系是(  )
A.f(a+2)>f(3)B.f(a+2)<f(3)C.f(a+2)=f(3)D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.U=R,設(shè)A={x|x≥1或x≤-3},B={x|-4<x<0},求:
(1)A∩B,A∪B;
(2)∁UA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.平面向量$\overrightarrow a$=(m,1),$\overrightarrow b$=(1,2),若$\overrightarrow a$⊥$\overrightarrow b$,則實(shí)數(shù)m的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x+1)是偶函數(shù),且滿足f(x+1)=$\frac{1}{f(x)}$,當(dāng)2≥x2>x1≥1時(shí),[f(x2)-f(x1)](x2-x1)>0恒成立,設(shè)a=f(-2016),b=f(2015),c=f(π),則a,b,c的大小關(guān)系為a>c>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,O為中線AM上的一個(gè)動(dòng)點(diǎn),若AM=2,則$\overrightarrow{OA}$•($\overrightarrow{OB}$+$\overrightarrow{OC}$)的最小值是( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)求下列函數(shù)的導(dǎo)數(shù):
①f(x)=(1-x)(1+x)(1+x2)(1+x4);
②f(x)=$\frac{2^x}{ln2}$.
(2)設(shè)$f(x)=\frac{2sinx}{{1+{x^2}}}$,如果$f'(x)=\frac{2}{{{{(1+{x^2})}^2}}}•g(x)$,試求g(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.一般地,如果函數(shù)f(x)的圖象關(guān)于點(diǎn)(a,b)對(duì)稱,那么對(duì)定義域內(nèi)的任意x,則f(x)+f(2a-x)=2b恒成立,已知函數(shù)f(x)=$\frac{4^x}{{{4^x}+m}}$的定義域?yàn)镽,其圖象關(guān)于$(\frac{1}{2},\frac{1}{2})$對(duì)稱.
(1)求常數(shù)m的值;
(2)解關(guān)于x的方程:log2[1-f(x)]•log2[4-xf(x)]=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案