【題目】已知點(diǎn),圓的圓心為,半徑為.
(1)設(shè),求過(guò)點(diǎn)A且與圓相切的直線(xiàn)方程;
(2)設(shè),直線(xiàn)過(guò)點(diǎn)A且被圓截得的弦長(zhǎng)為,求直線(xiàn)的方程.
【答案】(1)或;(2)或.
【解析】
(1)由,當(dāng)切線(xiàn)沒(méi)有斜率時(shí),直線(xiàn)方程為=3,成立;當(dāng)切線(xiàn)有斜率時(shí),設(shè)切線(xiàn)方程為,利用圓心到切線(xiàn)的距離公式求出,由此能求出切線(xiàn)的方程.
(2)設(shè)直線(xiàn)的方程為,即,圓心到直線(xiàn)的距離=,由此能出直線(xiàn)的方程.
(1)∵A(3,3),
當(dāng)過(guò)點(diǎn)A且與圓相切的直線(xiàn)沒(méi)有斜率時(shí),切線(xiàn)方程為x=3,成立,
當(dāng)過(guò)點(diǎn)A且與圓相切的直線(xiàn)有斜率時(shí),設(shè)切線(xiàn)方程為y﹣3=k(x﹣3),即,
圓心到切線(xiàn)的距離為半徑r=2,即d==2,解得k=﹣,
∴切線(xiàn)方程為y﹣3=﹣(x﹣3),即,
∴過(guò)點(diǎn)A且與圓相切的直線(xiàn)方程為或.
(2)∵直線(xiàn)過(guò)點(diǎn)A(4,3)且被圓截得的弦長(zhǎng)為,
當(dāng)直線(xiàn)的斜率不存在時(shí),直線(xiàn)的方程為x=4,不成立;
當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)直線(xiàn)的方程為y﹣3=k(x﹣4),即,
圓心到直線(xiàn)的距離d==,解得k=0或k=,
∴直線(xiàn)的方程為y﹣3=(x﹣4)或y﹣3=0,
故直線(xiàn)的方程為或y=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)的右頂點(diǎn)到其一條漸近線(xiàn)的距離等于,拋物線(xiàn)的焦點(diǎn)與雙曲線(xiàn)的右焦點(diǎn)重合,則拋物線(xiàn)上的動(dòng)點(diǎn)到直線(xiàn)和距離之和的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2) 若函數(shù)有兩個(gè)零點(diǎn), ,且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,、分別為、的中點(diǎn),,,如圖.
(1)若交平面于點(diǎn),證明:、、三點(diǎn)共線(xiàn);
(2)線(xiàn)段上是否存在點(diǎn),使得平面平面,若存在確定的位置,若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把物體放在冷空氣中冷卻,如果物體原來(lái)的溫度是,空氣的溫度是,則1min后物體的溫度可由公式求得,其中k是常數(shù),把溫度是的物體放在15℃的空氣中冷卻,1 min后,物體的溫度是.
(1)求出k的值;
(2)計(jì)算開(kāi)始冷卻多久后,上述物體的溫度分別是;
(3)判斷上述物體最終能否冷卻到12℃,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在等比數(shù)列{an}中,=2,,=128,數(shù)列{bn}滿(mǎn)足b1=1,b2=2,且{}為等差數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知常數(shù)且,在數(shù)列中,首項(xiàng),是其前項(xiàng)和,且,.
(1)設(shè),,證明數(shù)列是等比數(shù)列,并求出的通項(xiàng)公式;
(2)設(shè),,證明數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;
(3)若當(dāng)且僅當(dāng)時(shí),數(shù)列取到最小值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角中, 、、分別為角、、所對(duì)的邊,且.
()確定角的大小.
()若,且的面積為,求的值.
【答案】();()
【解析】試題分析:(1)由正弦定理可知, ,所以;(2)由題意, , ,得到.
試題解析:
(),∴,
∵,∴.
(), ,
,
∴.
【題型】解答題
【結(jié)束】
17
【題目】已知等差數(shù)列滿(mǎn)足:,.的前n項(xiàng)和為.
(Ⅰ)求 及;
(Ⅱ)若 ,(),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com