A. | $({1,\sqrt{2}}]$ | B. | $({0,\sqrt{2}}]$ | C. | $({1,\sqrt{2}})$ | D. | $({0,\sqrt{2}})$ |
分析 利用奇函數(shù)的定義f(-x)=-f(x)求出a的值,再由對(duì)數(shù)的真數(shù)大于零求出函數(shù)的定義域,則所給的區(qū)間應(yīng)是定義域的子集,求出b的范圍,利用指數(shù)函數(shù)的性質(zhì)求出ab的范圍.
解答 解:∵定義在區(qū)間(-b,b)內(nèi)的函數(shù)f(x)=lg$\frac{1+ax}{1-2x}$是奇函數(shù),x∈(-b,b),
∴f(-x)=-f(x),即lg$\frac{1+ax}{1-2x}$=$-lg\frac{1-ax}{1+2x}$,$\frac{1+ax}{1-2x}$=$\frac{1+2x}{1-ax}$,
∴1-a2x2=1-4x2,解得a=±2,
又∵a≠-2,∴a=2;則函數(shù)f(x)=$lg\frac{1+2x}{1-2x}$,
要使函數(shù)有意義,則$\frac{1+2x}{1-2x}$>0,即(1+2x)(1-2x)>0
解得:-$\frac{1}{2}$<x<$\frac{1}{2}$,即函數(shù)f(x)的定義域?yàn)椋海?$\frac{1}{2}$,$\frac{1}{2}$),
∴(-b,b)⊆(-$\frac{1}{2}$,$\frac{1}{2}$),∴0<b≤$\frac{1}{2}$,∵y=2x是增函數(shù),
∴ab的取值范圍是(1,$\sqrt{2}$].
故選:A.
點(diǎn)評(píng) 本題考查了奇函數(shù)的定義以及求對(duì)數(shù)函數(shù)的定義域,利用子集關(guān)系求出b的范圍,考查了學(xué)生的運(yùn)算能力和對(duì)定義的運(yùn)用能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {4} | B. | {1,5,7} | C. | {1,2,5,7,8} | D. | {1,2,4,5,7,8} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±$\frac{4}{3}$x | B. | y=±$\frac{3}{4}$x | C. | y=±$\frac{5}{3}$x | D. | y=±$\frac{3}{5}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com