【題目】求出下列函數(shù)的定義域,并判斷函數(shù)的奇偶性:
(1);(2);
(3);(4).
【答案】(1)定義域?yàn)?/span>,偶函數(shù);(2)定義域?yàn)?/span>R,既不是奇函數(shù),也不是偶函數(shù);(3)定義域?yàn)?/span>R,奇函數(shù);(4)定義域?yàn)?/span>,既不是奇函數(shù),也不是偶函數(shù).
【解析】
(1)根據(jù)指數(shù)冪的運(yùn)算公式化簡函數(shù)的解析式,求出函數(shù)的定義域,然后利用函數(shù)的奇偶性的定義進(jìn)行判斷即可;
(2)根據(jù)分?jǐn)?shù)指數(shù)冪和根式的轉(zhuǎn)化公式化簡函數(shù)的解析式,求出函數(shù)的定義域,然后利用函數(shù)的奇偶性的定義進(jìn)行判斷即可;
(3)根據(jù)分?jǐn)?shù)指數(shù)冪和根式的轉(zhuǎn)化公式化簡函數(shù)的解析式,求出函數(shù)的定義域,然后利用函數(shù)的奇偶性的定義進(jìn)行判斷即可;
(4)根據(jù)分?jǐn)?shù)指數(shù)冪和根式的轉(zhuǎn)化公式化簡函數(shù)的解析式,求出函數(shù)的定義域,然后利用函數(shù)的奇偶性的定義進(jìn)行判斷即可.
解:(1)的定義域?yàn)?/span>.
,
是偶函數(shù);
(2)的定義域?yàn)?/span>R.
,
.
既不是奇函數(shù),也不是偶函數(shù);
(3)的定義域?yàn)?/span>R.
,
是奇函數(shù);
(4)的定義域?yàn)?/span>,
既不是奇函數(shù),也不是偶函數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某單位甲、乙、丙三個部門共有員工60人,為調(diào)查他們的睡眠情況,通過分層抽樣獲得部分員工每天睡眼的時間,數(shù)據(jù)如下表(單位:小時)
甲部門 | 6 | 7 | 8 | |||
乙部門 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 |
丙部門 | 5 | 5.5 | 6 | 6.5 | 7 | 8.5 |
(1)求該單位乙部門的員工人數(shù)?
(2)若將每天睡眠時間不少于7小時視為睡眠充足,現(xiàn)從該單位任取1人,估計(jì)拍到的此人為睡眠充足者的概率;
(3)再從甲部門和乙部門抽出的員工中,各隨機(jī)選取一人,甲部門選出的員工記為A,乙部門選出的員工記為B,假設(shè)所有員工睡眠的時間相互獨(dú)立,求A的睡眠時間不少于B的睡眼時間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】針對國家提出的延遲退休方案,某機(jī)構(gòu)進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:
支持 | 保留 | 不支持 | |
歲以下 | |||
歲以上(含歲) |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;
(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取人看成一個總體,從這人中任意選取人,求至少有一人年齡在歲以下的概率.
(3)在接受調(diào)查的人中,有人給這項(xiàng)活動打出的分?jǐn)?shù)如下: , , , , , , , , , ,把這個人打出的分?jǐn)?shù)看作一個總體,從中任取一個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年11月11日是石室中學(xué)周年校慶日,學(xué)校數(shù)學(xué)愛好者社團(tuán)組織“解題迎校慶,我愛”的活動.其中一題如下:已知數(shù)列,其中第一項(xiàng)是,接下來的兩項(xiàng)是,,再接下來的三項(xiàng)是,,,依此類推.若該數(shù)列前項(xiàng)和為,則求滿足,且是的倍數(shù)條件的整數(shù)的個數(shù)為( )
A. 10B. 12C. 21D. 60
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,
(1)當(dāng)時,求的最大值和最小值;
(2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寧德市某汽車銷售中心為了了解市民購買中檔轎車的意向,在市內(nèi)隨機(jī)抽取了100名市民為樣本進(jìn)行調(diào)查,他們月收入(單位:千元)的頻數(shù)分布及有意向購買中檔轎車人數(shù)如下表:
月收入 | [3,4) | [4,5) | [5,6) | [6,7) | [7,8) | [8,9) |
頻數(shù) | 6 | 24 | 30 | 20 | 15 | 5 |
有意向購買中檔轎車人數(shù) | 2 | 12 | 26 | 11 | 7 | 2 |
將月收入不低于6千元的人群稱為“中等收入族”,月收入低于6千元的人群稱為“非中等收入族”.
(Ⅰ)在樣本中從月收入在[3,4)的市民中隨機(jī)抽取3名,求至少有1名市民“有意向購買中檔轎車”的概率.
(Ⅱ)根據(jù)已知條件完善下面的2×2列聯(lián)表,并判斷有多大的把握認(rèn)為有意向購買中檔轎車與收入高低有關(guān)?
非中等收入族 | 中等收入族 | 總計(jì) | |||||
有意向購買中檔轎車人數(shù) | 40 | ||||||
無意向購買中檔轎車人數(shù) | 20 | ||||||
總計(jì) | 100 | ||||||
0.10 | 0.05 | 0.010 | 0.005 | ||||
2.706 | 3.841 | 6.635 | 7.879 | ||||
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】獨(dú)立性檢驗(yàn)中,假設(shè):運(yùn)動員受傷與不做熱身運(yùn)動沒有關(guān)系.在上述假設(shè)成立的情況下,計(jì)算得的觀測值.下列結(jié)論正確的是
A. 在犯錯誤的概率不超過0.01的前提下,認(rèn)為運(yùn)動員受傷與不做熱身運(yùn)動有關(guān)
B. 在犯錯誤的概率不超過0.01的前提下,認(rèn)為運(yùn)動員受傷與不做熱身運(yùn)動無關(guān)
C. 在犯錯誤的概率不超過0.005的前提下,認(rèn)為運(yùn)動員受傷與不做熱身運(yùn)動有關(guān)
D. 在犯錯誤的概率不超過0.005的前提下,認(rèn)為運(yùn)動員受傷與不做熱身運(yùn)動無關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)在圓上,直線上圓在點(diǎn)處的切線,過點(diǎn)作圓的切線與交于點(diǎn).
(Ⅰ)證明為定值,并求動點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)過點(diǎn)的直線與曲線分別交于和,且,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某兒童樂園在“六一”兒童節(jié)推出了一項(xiàng)趣味活動.參加活動的兒童需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄指針?biāo)竻^(qū)域中的數(shù).設(shè)兩次記錄的數(shù)分別為x,y.獎勵規(guī)則如下:
①若,則獎勵玩具一個;
②若,則獎勵水杯一個;
③其余情況獎勵飲料一瓶.
假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個區(qū)域劃分均勻.小亮準(zhǔn)備參加此項(xiàng)活動.
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com