【題目】如圖,四棱錐的底面是正方形, ,點E在棱PB上.
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)且E為PB的中點時,求AE與平面PDB所成的角的大小.
【答案】(1)見解析 (2)
【解析】試題分析:(Ⅰ)欲證平面AEC⊥平面PDB,根據(jù)面面垂直的判定定理可知在平面AEC內(nèi)一直線與平面PDB垂直,而根據(jù)題意可得AC⊥平面PDB;(Ⅱ)設(shè)AC∩BD=O,連接OE,根據(jù)線面所成角的定義可知∠AEO為AE與平面PDB所的角,在Rt△AOE中求出此角即可
試題解析:(1)證明:∵四邊形ABCD是正方形,∴AC⊥BD,∵,
∴PD⊥AC,∴AC⊥平面PDB,
∴平面.
(2)解:設(shè)AC∩BD=O,連接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO為AE與平面PDB所的角,
∵ O,E分別為DB、PB的中點,
∴OE//PD, ,
在Rt△AOE中, ,∴,
即AE與平面PDB所成的角的大小為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象經(jīng)過(-1,0)點,且在x=-1處的切線斜率為-1,設(shè)數(shù)列的前n項和Sn=f(n)(n∈N*).
(1)求數(shù)列的通項公式;
(2)求數(shù)列{}前n項的和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓O:和點,由圓O外一點P向圓O引切線,Q為切點,且有 .
(1)求點P的軌跡方程,并說明點P的軌跡是什么樣的幾何圖形?
(2)求的最小值;
(3)以P為圓心作圓,使它與圓O有公共點,試在其中求出半徑最小的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線l過點.
(1)若直線l的縱截距和橫截距相等,求直線l的方程;
(2)若直線l與兩坐標(biāo)軸圍成的三角形的面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定空間中十個點,其中任意四點不在一個平面上,將某些點之間用線段相連,若得到的圖形中沒有三角形也沒有空間四邊形,試確定所連線段數(shù)目的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),圖象上兩相鄰對稱軸之間的距離為;_______________;
(Ⅰ)在①的一條對稱軸;②的一個對稱中心;③的圖象經(jīng)過點這三個條件中任選一個補(bǔ)充在上面空白橫線中,然后確定函數(shù)的解析式;
(Ⅱ)若動直線與和的圖象分別交于、兩點,求線段長度的最大值及此時的值.
注:如果選擇多個條件分別解答,按第一個解答計分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為某大河的一段支流,岸線近似滿足∥寬度為7圓為河中的一個半徑為2的小島,小鎮(zhèn)位于岸線上,且滿足岸線現(xiàn)計劃建造一條自小鎮(zhèn)經(jīng)小島至對岸的通道(圖中粗線部分折線段,在右側(cè)),為保護(hù)小島,段設(shè)計成與圓相切,設(shè)
(1)試將通道的長表示成的函數(shù),并指出其定義域.
(2)求通道的最短長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com