15.已知A={x|2≤x≤π},定義在A上的函數(shù)y=logax(a>0,且a≠1)的最大值比最小值大1,則底數(shù)a的值為( 。
A.$\frac{2}{π}$B.$\frac{π}{2}$C.π-2D.$\frac{2}{π}$或$\frac{π}{2}$

分析 由題意討論a的取值以確定函數(shù)的單調(diào)性及最值,從而求解.

解答 解:當(dāng)0<a<1時(shí),f(x)=logax(a>0且a≠0)在[2,π]上是減函數(shù),
故loga2-logaπ=1;
故a=$\frac{2}{π}$;
當(dāng)a>1,f(x)=logax(a>0且a≠0)在[2,π]上是增函數(shù),
故logaπ-loga2=1;
故a=$\frac{π}{2}$
故選D.

點(diǎn)評(píng) 本題主要考查對(duì)數(shù)函數(shù)的定義域和單調(diào)性,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)=ln(mx2-6mx+m+8)的定義域?yàn)閷?shí)數(shù)集R,則實(shí)數(shù)m的取值范圍是0≤m<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知m∈R,命題p:?x∈[0,1],不等式2x-2≥m2-3m恒成立;命題q:?x∈[-1,1],使得x2-m≥0成立.若命題p∨q為真命題,p∧q為假命題,則實(shí)數(shù)m的取值范圍是(-∞,1)∪(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\root{3}{x-1}$+log2(x2-1)的定義域?yàn)椋ā 。?table class="qanwser">A.(1,+∞)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)∪[1,+∞)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)a∈{-1,1,$\frac{1}{3}$,$\frac{2}{3}$},則使函數(shù)y=xa的定義域?yàn)镽且為奇函數(shù)的所有a的值為(  )
A.$-1,\frac{1}{3}$B.$1,\frac{2}{3}$C.$1,\frac{1}{3}$D.$1,\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=(x-k)ex
(Ⅰ)當(dāng)k=1時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則下列說法中,所有正確說法的序號(hào)是①②
①f(x)的圖象關(guān)于直線x=$\frac{7π}{12}$對(duì)稱
②f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z
③方程f(x)=1在[-$\frac{π}{2}$,0]上有兩個(gè)不相等的實(shí)根
④函數(shù)f(x)的圖象是由函數(shù)y=2sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{π}{6}$個(gè)單位得到的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=-$\frac{1}{2}$x2+bln(x+2)在區(qū)間[-1,2]不單調(diào),則b的取值范圍是( 。
A.(-∞,-1]B.[8,+∞)C.(-∞,-1]∪[8,+∞)D.(-1,8)

查看答案和解析>>

同步練習(xí)冊(cè)答案