A. | (-∞,-1] | B. | [8,+∞) | C. | (-∞,-1]∪[8,+∞) | D. | (-1,8) |
分析 求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為b=x2+2x在[-1,2]上有解,根據(jù)二次函數(shù)的性質(zhì)求出b的范圍即可.
解答 解:f′(x)=-x+$\frac{x+2}$,
故f(x)在[-1,2]上不單調(diào)
等價于-x+$\frac{x+2}$=0在[-1,2]上有解,
由x>-1得x+2>0,
原命題成立等價于b=x2+2x在[-1,2]上有解,
而y=x2+2x=(x+1)2-1在[-1,2]遞增,
故-1≤y≤8,
故-1<b<8,
故選:D.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{π}$ | B. | $\frac{π}{2}$ | C. | π-2 | D. | $\frac{2}{π}$或$\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2-y2=1 | B. | x2-$\frac{{y}^{2}}{2}$=1 | C. | x2-$\frac{{y}^{2}}{3}$=1 | D. | x2-$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com