分析 (I)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)求導(dǎo),令導(dǎo)數(shù)等于零,解方程,跟據(jù)f′(x)f(x)隨x的變化情況即可求出函數(shù)的單調(diào)區(qū)間,對(duì)k-1是否在區(qū)間[0,1]內(nèi)進(jìn)行討論,從而求得f(x)在區(qū)間[0,1]上的最小值.
解答 解:(Ⅰ)k=1時(shí),f(x)=(x-1)ex,
f′(x)=xex,
令f′(x)>0,解得:x>0,令f′(x)<0,解得:x<0,
∴f(x)在(-∞,0)遞減,在(0,+∞)遞增;
(Ⅱ)f′(x)=(x-k+1)ex,
令f′(x)=0,得x=k-1,
f′(x)f(x)隨x的變化情況如下:
x | (-∞,k-1) | k-1 | (k-1,+∞) |
f′(x) | - | 0 | + |
f(x) | ↓ | -ek-1 | ↑ |
點(diǎn)評(píng) 此題是個(gè)中檔題.考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和在閉區(qū)間上的最值問(wèn)題,對(duì)方程f'(x)=0根是否在區(qū)間[0,1]內(nèi)進(jìn)行討論,體現(xiàn)了分類(lèi)討論的思想方法,增加了題目的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p∧q是真命題 | B. | p∨q是假命題 | C. | 非p是真命題 | D. | 非q是真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{π}$ | B. | $\frac{π}{2}$ | C. | π-2 | D. | $\frac{2}{π}$或$\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 10 | C. | 12 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分必要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com