19.已知函數(shù)f(x)=-aln(x+1)+$\frac{a+1}{x+1}$-a-1(a∈R).
(Ⅰ)討論f(x)在(0,+∞)上的單調(diào)性;
(Ⅱ)若對任意的正整數(shù)n都有(1+$\frac{1}{n}$)n-a>e成立,求a的取值范圍.

分析 (I)利用導數(shù)的運算法則可得:f′(x)=-$\frac{ax+2a+1}{(x+1)^{2}}$,對a分類討論即可得出單調(diào)性.
(Ⅱ)${(1+\frac{1}{n})^{n-a}}>e$$?(1-\frac{a}{n})ln(1+\frac{1}{n})-\frac{1}{n}>0$.令g(x)=(1-ax)ln(1+x)-x,x∈(0,1],故要上式成立,只需對?x∈(0,1],有g(shù)(x)>0.$g'(x)=f(x)=-aln(x+1)+\frac{a+1}{x+1}-a-1$,利用(Ⅰ),對a分類討論即可得出.

解答 解:(Ⅰ)$f'(x)=\frac{-a}{x+1}-\frac{a+1}{{{{(x+1)}^2}}}=-\frac{ax+2a+1}{{{{(x+1)}^2}}}$,
當$a≤-\frac{1}{2}$時,f'(x)>0在(0,+∞)上恒成立,∴f(x)在(0,+∞)上單調(diào)遞增;
當$-\frac{1}{2}<a<0$時,f(x)在$(0,-\frac{2a+1}{a})$上單調(diào)遞減,在$(-\frac{2a+1}{a},+∞)$上單調(diào)遞增,
當a≥0時,f'(x)<0在(0,+∞)上恒成立,∴f(x)在(0,+∞)上單調(diào)遞減.
(Ⅱ)${(1+\frac{1}{n})^{n-a}}>e$$?(1-\frac{a}{n})ln(1+\frac{1}{n})-\frac{1}{n}>0$.
令g(x)=(1-ax)ln(1+x)-x,x∈(0,1],故要上式成立,只需對?x∈(0,1],有g(shù)(x)>0.$g'(x)=f(x)=-aln(x+1)+\frac{a+1}{x+1}-a-1$,由(Ⅰ)可知:
①當$a≤-\frac{1}{2}$時,∴g(x)在(0,1]上單調(diào)遞增;∴g(x)>g(0)=0,符合題意.
②當a≥0時,∴g(x)在(0,1]上單調(diào)遞減;∴g(x)<g(0)=0,不符合題意.
③當$-\frac{1}{2}<a≤-\frac{1}{3}$時,g(x)在$(0,-\frac{2a+1}{a})$上單調(diào)遞減;
∴當$x∈(0,-\frac{2a+1}{a})$時,g(x)<g(0)=0,不符合題意.
④當$-\frac{1}{3}<a<0$時,g(x)在(0,1]上單調(diào)遞減;
∴當x∈(0,1]時g(x)<g(0)=0,不符合題意.
綜上可知,a的取值范圍為$(-∞,-\frac{1}{2}]$.

點評 本題考查了利用導數(shù)研究函數(shù)的單調(diào)性、不等式的解法,考查了分類討論方法、推理能力與計算能力,屬于難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.下列四個函數(shù)中,既是$(0,\frac{π}{2})$上的增函數(shù),又是以π為周期的偶函數(shù)的是( 。
A.y=sinxB.y=cosxC.y=|sinx|D.y=|cosx|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=asin(1-x)+lnx+b(a,b∈R).且f(x)在x=1處的切線方程過坐標原點.
(I)求a,b的關(guān)系;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,1)上為增函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)證明$\sum_{i-1}^{n}sin\frac{1}{(k+1)^{2}}<ln2$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知A(x,2,3)、B(5,4,7),且|AB|=6,則x的值為( 。
A.9B.1或9C.1D.8或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值的和為a.
(1)求a的值;
(2)設函數(shù)Φ(x)=loga$\frac{mx}{\sqrt{1+{x}^{2}}}$,若對任意x∈[1,2],不等式Φ(x)+logam≥0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.為了完成銷售任務,甲、乙兩家服裝店在本月最后一天舉行大型優(yōu)惠促銷活動,現(xiàn)將兩家服裝店該日8個時段的成交量(單位:件)統(tǒng)計如表所示:
6791222201514
89112122191516
(Ⅰ)根據(jù)以上數(shù)據(jù),繪制甲、乙兩家服裝店該日8個時段成交量的莖葉圖;
(Ⅱ)現(xiàn)從乙店的成交量小于16的數(shù)據(jù)中隨機抽取兩個,求至少有一個數(shù)據(jù)小于10的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.旅游公司為3個旅游團提供甲、乙、丙、丁4條旅游線路,每個旅游團任選其中一條.
(1)求3個旅游團選擇3條不同的線路的概率;
(2)求恰有2條線路沒有被選擇的概率;
(3)求至少有一個旅游團選擇甲線路旅游的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.直線l的方程:$\left\{\begin{array}{l}{x=1-tsin25°}\\{y=2+tcos25°}\end{array}\right.$(t為參數(shù)),那么直線l的傾斜角為( 。
A.25°B.65°C.115°D.155°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.點B是點A(1,2,3)在坐標平面yOz內(nèi)的射影,則OB等于(  )
A.$\sqrt{13}$B.$\sqrt{14}$C.2$\sqrt{3}$D.$\sqrt{13}$

查看答案和解析>>

同步練習冊答案