【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側(cè)面ADD1A1⊥底面ABCD,D1A=D1D= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).

(Ⅰ)求證:A1O∥平面AB1C;
(Ⅱ)求銳二面角A﹣C1D1﹣C的余弦值.

【答案】(Ⅰ)證明:如圖,連接CO,AC,

則四邊形ABCO為正方形,

∴OC=AB=A1B1,且OC∥AB∥A1B1

∴四邊形A1B1CO為平行四邊形,

∴A1O∥B1C,

又∵A1O平面AB1C,B1C平面AB1C,

∴A1O∥平面AB1C.…

(Ⅱ)∵D1A=D1D,O為AD的中點(diǎn),

∴D1O⊥AD,又側(cè)面ADD1A1⊥底面ABCD,

∴D1O⊥底面ABCD,…

以O(shè)為原點(diǎn),OC,OD,OD1所在直線分別為x軸,y軸,Z軸,

建立如圖所示的坐標(biāo)系,

由題意得:C(1,0,0),D(0,1,0),

D1(0,0,1),A(0,﹣1,0),…

=(0,﹣1,1),

=(0,﹣1,﹣1), =(1,﹣1,0),

設(shè) 為平面CDD1C1的一個法向量,

,∴

令Z=1,則y=1,x=1,∴ ,…

設(shè) 為平面AC1D1的一個法向量,

,∴ ,令Z1=1,

則y1=﹣1,x1=﹣1,∴ ,

∴所求銳二面角A﹣C1D1﹣C的余弦值為 .…


【解析】(1)連接CO,AC易證為平行四邊形,由此可證∥平面;(2)以O(shè)為坐標(biāo)原點(diǎn),OC,OD,為x,y,z軸建立空間直角坐標(biāo)系,利用法向量求出銳二面角。
【考點(diǎn)精析】本題主要考查了直線與平面平行的判定的相關(guān)知識點(diǎn),需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,橢圓C1 的左、右焦點(diǎn)分別為F1 , F2 , 其中F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)P為C1與C2在第一象限的交點(diǎn),且
(Ⅰ)求橢圓的方程;
(Ⅱ)過F2且與坐標(biāo)軸不垂直的直線交橢圓于M、N兩點(diǎn),若線段OF2上存在定點(diǎn)T(t,0)使得以TM、TN為鄰邊的四邊形是菱形,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一塊以點(diǎn)O為圓心,半徑為2百米的圓形草坪,草坪內(nèi)距離O點(diǎn) 百米的D點(diǎn)有一用于灌溉的水籠頭,現(xiàn)準(zhǔn)備過點(diǎn)D修一條筆直小路交草坪圓周于A,B兩點(diǎn),為了方便居民散步,同時修建小路OA,OB,其中小路的寬度忽略不計.

(1)若要使修建的小路的費(fèi)用最省,試求小路的最短長度;
(2)若要在△ABO區(qū)域內(nèi)(含邊界)規(guī)劃出一塊圓形的場地用于老年人跳廣場舞,試求這塊圓形廣場的最大面積.(結(jié)果保留根號和π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公比為q(q≠1)的等比數(shù)列a1 , a2 , a3 , a4 , 若刪去其中的某一項后,剩余的三項(不改變原有順序)成等差數(shù)列,則所有滿足條件的q的取值的代數(shù)和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx+(1﹣x)ln(1﹣x),x∈(0,1).
(1)求f(x)的最小值;
(2)若a+b+c=1,a,b,c∈(0,1).求證:alna+blnb+clnc≥(a﹣2)ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) (ω>0)的圖象與x軸正半軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個公差為 的等差數(shù)列,若要得到函數(shù)g(x)=Asinωx的圖象,只要將f(x)的圖象(  )個單位.
A.向左平移
B.向右平移
C.向左平移
D.向右平移

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科技公司生產(chǎn)一種手機(jī)加密芯片,其質(zhì)量按測試指標(biāo)劃分為:指標(biāo)大于或等于70為合格品,小于70為次品.現(xiàn)隨機(jī)抽取這種芯片共120件進(jìn)行檢測,檢測結(jié)果統(tǒng)計如表:

測試指標(biāo)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

芯片數(shù)量(件)

8

22

45

37

8

已知生產(chǎn)一件芯片,若是合格品可盈利400元,若是次品則虧損50元.
(Ⅰ)試估計生產(chǎn)一件芯片為合格品的概率;并求生產(chǎn)3件芯片所獲得的利潤不少于700元的概率.
(Ⅱ)記ξ為生產(chǎn)4件芯片所得的總利潤,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面上,點(diǎn)A、C為射線PM上的兩點(diǎn),點(diǎn)B、D為射線PN上的兩點(diǎn),則有 (其中S△PAB、S△PCD分別為△PAB、△PCD的面積);空間中,點(diǎn)A、C為射線PM上的兩點(diǎn),點(diǎn)B、D為射線PN上的兩點(diǎn),點(diǎn)E、F為射線PL上的兩點(diǎn),則有 =(其中VP﹣ABE、VP﹣CDF分別為四面體P﹣ABE、P﹣CDF的體積).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=2px(p>0),F(xiàn)為其焦點(diǎn),過點(diǎn)(4,0)作垂直于x軸的直線交拋物線于A,B兩點(diǎn),△ABF的周長為18.
(1)求拋物線的方程;
(2)過拋物線上的定點(diǎn) 作兩條關(guān)于直線y=p對稱的直線分別交拋物線于C,D兩點(diǎn),連接CD,判斷直線CD的斜率是否為定值?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案