11.若等比數(shù)列{an}滿足a2+a4=20,a3+a5=40,則公比q等于( 。
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

分析 根據(jù)題意,設(shè)等比數(shù)列{an}的公比q,由等比數(shù)列的通項(xiàng)公式可得a3+a5=a2q+a4q=(a2+a4)×q=40,結(jié)合題意可得公比q的值,即可得答案.

解答 解:根據(jù)題意,設(shè)等比數(shù)列{an}的公比q,
則有a3=a2q,a5=a4q,
則a3+a5=a2q+a4q=(a2+a4)×q=40,
又由a2+a4=20,
則q=2;
故選:A.

點(diǎn)評(píng) 本題考查等比數(shù)列的性質(zhì),關(guān)鍵是掌握等比數(shù)列的通項(xiàng)并靈活應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知定義在R上的函數(shù)f(x)滿足:①對(duì)任意x∈R,有f(x+2)=2f(x);②當(dāng)x∈[-1,1]時(shí),f(x)=$\sqrt{1-{x}^{2}}$.若函數(shù)g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$則函數(shù)y=f(x)-g(x)在區(qū)間(-4,5)上的零點(diǎn)個(gè)數(shù)是( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知${z_1}=5+10i,{z_2}=3-4i,\frac{1}{z}=\frac{1}{z_1}+\frac{1}{z_2}$,則z的值為( 。
A.$\frac{5}{2}+5i$B.$\frac{5}{2}-5i$C.$5-\frac{5}{2}i$D.$-5+\frac{5}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.《孫子算經(jīng)》是我國(guó)古代的數(shù)學(xué)名著,書中有如下問題:“今有五等諸侯,共分橘子六十顆,人別加三顆.問:五人各得幾何?”其意思為“有5個(gè)人分60個(gè)橘子,他們分得的橘子數(shù)成公差為3的等差數(shù)列,問5人各得多少橘子.”這個(gè)問題中,得到橘子最多的人所得的橘子個(gè)數(shù)是18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,生產(chǎn)1噸A種產(chǎn)品需要煤4噸、電18千瓦;生產(chǎn)1噸B種產(chǎn)品需要煤1噸、電15千瓦.現(xiàn)因條件限制,該企業(yè)僅有煤10噸,并且供電局只能供電66千瓦,若生產(chǎn)1噸A種產(chǎn)品的利潤(rùn)為10000元;生產(chǎn)1噸B種產(chǎn)品的利潤(rùn)是5000元,試問該企業(yè)如何安排生產(chǎn),才能獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=(x-1)ex-kx2+2,k∈R.
(Ⅰ) 當(dāng)k=0時(shí),求f(x)的極值;
(Ⅱ) 若對(duì)于任意的x∈[0,+∞),f(x)≥1恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在等差數(shù)列{an}中,a1=2,a3+a5=16.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)如果a2,am,a2m成等比數(shù)列,求正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓的離心率e=$\frac{1}{2}$,一條準(zhǔn)線方程為x=4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若F1,F(xiàn)2為其左右兩個(gè)焦點(diǎn),過F1的直線交橢圓于A、B兩點(diǎn).
①若|AB|=2,求|AF2|+|BF2|的值;
②若∠F1AF2=30°,求△F1AF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在數(shù)列{an}中,a3=12,a11=-5,且任意連續(xù)三項(xiàng)的和均為11,則a2017=4;設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,則使得Sn≤100成立的最大整數(shù)n=29.

查看答案和解析>>

同步練習(xí)冊(cè)答案