15.已知直線$l:\left\{{\begin{array}{l}{x=-\sqrt{3}+\frac{{\sqrt{3}}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}}\right.$(t為參數(shù)).
(1)求直線l的傾斜角和t=2時(shí)對(duì)應(yīng)的點(diǎn)M(x,y);
(2)求直線l上的點(diǎn)$N(-3\sqrt{3},0)$對(duì)應(yīng)的參數(shù)t,并說(shuō)明t的幾何意義.

分析 (1)化成普通方程得出直線斜率,即可得出傾斜角,把t=2代入?yún)?shù)方程得出M坐標(biāo);
(2)根據(jù)參數(shù)方程計(jì)算t,從與定點(diǎn)的距離與方向說(shuō)明t的幾何意義.

解答 解:(1)直線的普通方程為x-$\sqrt{3}$y+3$\sqrt{3}$=0,
∴直線的斜率k=$\frac{\sqrt{3}}{3}$,∴直線的傾斜角為$\frac{π}{6}$.
當(dāng)t=2時(shí),$x=-\sqrt{3}+\frac{{\sqrt{3}}}{2}×2=0$,$y=2+\frac{1}{2}×2=3$,∴M(0,3).
(2)將$N(-3\sqrt{3},0)$,代入$l:\left\{{\begin{array}{l}{x=-\sqrt{3}+\frac{{\sqrt{3}}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}}\right.$(t為參數(shù)),得t=-4,
t=-4表示$N(-3\sqrt{3},0)$在定點(diǎn)(-$\sqrt{3}$,2)沿直線向下的方向,與定點(diǎn)距離為4.

點(diǎn)評(píng) 本題考查了直線的參數(shù)方程,參數(shù)的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an}滿足an=nkn(n∈N*,0<k<1),下面命題:
①當(dāng)k=$\frac{1}{2}$時(shí),數(shù)列{an}為遞減數(shù)列;
②當(dāng)$\frac{1}{2}$<k<1時(shí),數(shù)列{an}不一定有最大項(xiàng);
③當(dāng)0<k<$\frac{1}{2}$時(shí),數(shù)列{an}為遞減數(shù)列;
④當(dāng)$\frac{k}{1-k}$為正整數(shù)時(shí),數(shù)列{an}必有兩項(xiàng)相等的最大項(xiàng).
其中正確命題的序號(hào)是③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline z$,那么條件p:$z=\overline z$是條件q:z為實(shí)數(shù)的( 。
A.充分而不必要的條件B.必要而不充分的條件
C.充要條件D.既不充分也不必要的條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=x-alnx(a∈R)
(Ⅰ)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(Ⅱ)討論函數(shù)f(x)單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列各數(shù)中最小的是( 。
A.111111(2)B.222(5)C.1000(4)D.65

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知f(x)=$\left\{\begin{array}{l}{sin\frac{π}{8}x,x≥0}\\{f(x+5)+2,x<0}\end{array}\right.$則f(-2016)的值為( 。
A.810B.809C.808D.806

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)i為虛數(shù)單位,若復(fù)數(shù)z=(m2+2m-8)+(m-2)i是純虛數(shù),則實(shí)數(shù)m=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列結(jié)論一定正確的是(  )
A.圓心角為1弧度的扇形的弧長(zhǎng)都相等
B.角α是第四象限角,則2kπ-$\frac{π}{2}$<α<2kπ(k∈Z)
C.第二象限的角比第一象限的角大
D.第一象限的角是銳角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對(duì)任意的x∈R都有3f′(x)>f(x)成立,則( 。
A.3f(3ln2)>2f(3ln3)B.3f(3ln2)與2f(3ln3)的大小不確定
C.3f(3ln2)=2f(3ln3)D.3f(3ln2)<2f(3ln3)

查看答案和解析>>

同步練習(xí)冊(cè)答案