A. | 3f(3ln2)>2f(3ln3) | B. | 3f(3ln2)與2f(3ln3)的大小不確定 | ||
C. | 3f(3ln2)=2f(3ln3) | D. | 3f(3ln2)<2f(3ln3) |
分析 根據(jù)選項(xiàng)可構(gòu)造函數(shù)h(x)=$\frac{f(3lnx)}{x}$,利用導(dǎo)數(shù)判斷函數(shù)h(x)的單調(diào)性,進(jìn)而可比較h(2)與h(3)的大小,從而得到答案.
解答 解:令h(x)=$\frac{f(3lnx)}{x}$,則h′(x)=$\frac{3f′(3lnx)-f(3lnx)}{{x}^{2}}$,
因?yàn)閷?duì)任意的x∈R都有3f′(x)>f(x)成立,所以3f′(3lnx)>f(3lnx),
所以h′(x)>0,h(x)在(0,+∞)上單調(diào)遞增,
所以h(2)<h(3),即$\frac{f(3ln2)}{2}$<$\frac{f(3ln3)}{3}$,
所以3f(3ln2)<2f(3ln3).
故選D.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性.合理構(gòu)造函數(shù)是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分必要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x0∈R+,e${\;}^{{x}_{0}}$<lnx0 | B. | ?x∈R+,e^x<lnx | ||
C. | ?x0∈R+,e${\;}^{{x}_{0}}$≤lnx0 | D. | ?x∈R+,e^x≤lnx |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com