6.已知向量$\overrightarrow a$=(x,$\sqrt{3}}$),$\overrightarrow b$=(x,-$\sqrt{3}}$),若(2$\overrightarrow a$+$\overrightarrow b}$)⊥$\overrightarrow b$,則|${\overrightarrow a}$|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 由$(2\overrightarrow{a}+\overrightarrow)⊥\overrightarrow$便可得到$(2\overrightarrow{a}+\overrightarrow)•\overrightarrow=0$,代入向量$\overrightarrow{a},\overrightarrow$的坐標(biāo)進(jìn)行運(yùn)算即可求出x2的值,從而便可得出$|\overrightarrow{a}|$的值.

解答 解:根據(jù)條件:$(2\overrightarrow{a}+\overrightarrow)⊥\overrightarrow$;
∴$(2\overrightarrow{a}+\overrightarrow)•\overrightarrow=2\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}$
=2(x2-3)+x2+3
=3x2-3
=0;
∴x2=1;
∴$|\overrightarrow{a}|=\sqrt{{x}^{2}+3}=\sqrt{4}=2$.
故選D.

點(diǎn)評(píng) 考查向量垂直的充要條件,向量坐標(biāo)的數(shù)量積運(yùn)算,能根據(jù)向量坐標(biāo)求向量長(zhǎng)度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知等比數(shù)列{an}的公比q>1,Sn是前n項(xiàng)和,且a1,a3是方程x2-5x+4=0的兩根,求數(shù)列{an}的通項(xiàng)公式an及S6的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)y=$\frac{\sqrt{-x}}{2{x}^{2}-3x-2}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,0]B.(-∞,-$\frac{1}{2}$]C.(-∞,-$\frac{1}{2}$]∪(-$\frac{1}{2}$,0]D.(-$\frac{1}{2}$,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知f(x)=$\left\{\begin{array}{l}{x-3(x≥9)}\\{f[f(x+4)](x<9)}\end{array}\right.$,則f(8)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{AC}$=16,sinA=sinBcosC,D是線段AB上的動(dòng)點(diǎn)(含端點(diǎn)),則$\overrightarrow{DA}$•$\overrightarrow{DC}$的取值范圍是[-4,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.下列函數(shù)中,最小正周期為π 且圖象關(guān)于原點(diǎn)對(duì)稱的函數(shù)是①.
①y=cos(2x+$\frac{π}{2}$)  ②y=sin(2x+$\frac{π}{2}$)③y=sin2x+cos2x  ④y=sinx+cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)是R上的增函數(shù),A(0,-1),B(3,1)是其圖象上的兩點(diǎn),那么-1<f(x)<1 的解集是(  )
A.(-3,0)B.(0,3)C.(-∞,-1]∪[3,+∞)D.(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)解方程4x-2x-2=0.
(2)求不等式 log2(2x+3)>log2(5x-6);
(3)求函數(shù)y=($\frac{1}{3}$)${\;}^{{x}^{2}-4x}$,x∈[0,5)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,A,B是銳角,c=10,且$\frac{cosA}{cosB}=\frac{a}=\frac{4}{3}$.
(1)證明角C=90°;    
(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案