【題目】下列函數(shù)中,最小值為4的有多少個(gè)?( (0<x<π) ③y=ex+4ex④y=log3x+4logx3.
A.4
B.3
C.2
D.1

【答案】D
【解析】解答:①y=x+ ,當(dāng)x=﹣1時(shí),y=﹣5顯然最小值不是4,故不正確; ②y=sinx+ (0<x<π),y=sinx+ ≥4,此時(shí)sinx=2,這不可能,故不正確;
③y=ex+4ex≥4,當(dāng)且僅當(dāng)x=ln2時(shí)等號(hào)成立.
④y=log3x+4logx3,當(dāng)log3x>0,logx3>0,∴y=log3x+4logx3≥4,此時(shí)x=9,當(dāng)log3x<0,logx3<0故不正確;
故選D.
分析:對(duì)于①,取特殊值x=﹣1時(shí),y=﹣5顯然最小值不是4,對(duì)于②最小值取4時(shí)sinx=2,這不可能;對(duì)于③可以直接利用基本不等式求解即可;對(duì)于④根據(jù)基本不等式成立的條件滿(mǎn)足時(shí),運(yùn)用基本不等式即可求出最小值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解基本不等式的相關(guān)知識(shí),掌握基本不等式:,(當(dāng)且僅當(dāng)時(shí)取到等號(hào));變形公式:,以及對(duì)基本不等式在最值問(wèn)題中的應(yīng)用的理解,了解用基本不等式求最值時(shí)(積定和最小,和定積最大),要注意滿(mǎn)足三個(gè)條件“一正、二定、三相等”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)a,b,c,d>0,且不等于1,y=ax , y=bx , y=cx , y=dx在同一坐標(biāo)系中的圖象如圖,則a,b,c,d的大小順序( 。

A.a<b<c<d
B.a<b<d<c
C.b<a<d<c
D.b<a<c<d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn , 若a7>0,a8<0,則下列結(jié)論正確的是( )
A.S7S8
B.S15S16
C.S13>0
D.S15>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖所示將若干個(gè)點(diǎn)擺成三角形圖案,每條邊(包括兩個(gè)端點(diǎn))有n(n>l,n∈N*)個(gè)點(diǎn),相應(yīng)的圖案中總的點(diǎn)數(shù)記為 ,則 =( ).
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)F(x)=|lgx|,若0<a<b,且f(a)=f(b),則a+2b的取值范圍是(
A.
B.
C.(3,+∞)
D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距640米,余下工程只需要建兩端橋墩之間的橋面和橋墩,經(jīng)預(yù)測(cè),一個(gè)橋墩的工程費(fèi)用為256萬(wàn)元,距離為米的相鄰兩墩之間的橋面工程費(fèi)用為萬(wàn)元.假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其他因素,設(shè)需要新建個(gè)橋墩,記余下工程的費(fèi)用為萬(wàn)元.

(1)試寫(xiě)出關(guān)于的函數(shù)關(guān)系式;(注意:

(2)需新建多少個(gè)橋墩才能使最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當(dāng)a﹤0時(shí),證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某單位的職工食堂中,食堂每天以元/個(gè)的價(jià)格從面包店購(gòu)進(jìn)面包,然后以元/個(gè)的價(jià)格出售.如果當(dāng)天賣(mài)不完,剩下的面包以元/個(gè)的價(jià)格全部賣(mài)給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購(gòu)進(jìn)了個(gè)面包,以(單位:個(gè),)表示面包的需求量,(單位:元)表示利潤(rùn).

(1)求關(guān)于的函數(shù)解析式;

(2)根據(jù)直方圖估計(jì)利潤(rùn)不少于元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車(chē)“忽如一夜春風(fēng)來(lái)”,遍布了各個(gè)城市的大街小巷.為了解共享單車(chē)在市的使用情況,某調(diào)研機(jī)構(gòu)在該市隨機(jī)抽取了位市民進(jìn)行調(diào)查,得到的列聯(lián)表(單位:人)

(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為使用共享單車(chē)的情況與年齡有關(guān)?(結(jié)果保留3位小數(shù))

(2)現(xiàn)從所抽取的歲以上的市民中利用分層抽樣的方法再抽取5人

(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車(chē)的人數(shù);

(ii)從這5人中,再隨機(jī)抽取2人贈(zèng)送一件禮物,求選出的2人中至少有1人經(jīng)常使用共享單車(chē)的概率.

參考公式及數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案