分析 由題意,方程左邊對應(yīng)的函數(shù)圖象是以原點為圓心、半徑為1的圓的上半圓,右邊對應(yīng)的函數(shù)圖象是經(jīng)過定點C(0,2)且斜率為k的一條直線.可得當(dāng)直線與半圓相切時或直線在x軸上的交點位于(-1,0)和(1,0)之間時,原方程有唯一的實數(shù)解.由此建立關(guān)于k的代數(shù)關(guān)系式,即可得到實數(shù)k的范圍.
解答 解:設(shè)y1=$\sqrt{1-{x}^{2}}$,
表示以原點為圓心、半徑為1的圓的上半圓(含端點A、B)
設(shè)y2=kx+2,表示經(jīng)過定點C(0,2)且斜率為k的一條直線
當(dāng)直線y2=kx+2與半圓y1=$\sqrt{1-{x}^{2}}$相切時,原方程有唯一解
此時原點到直線的距離等于1,得$\frac{2}{\sqrt{1+{k}^{2}}}$=1,解之得k=±$\sqrt{3}$
當(dāng)直線在x軸上的交點位于A、B之間時,原方程也有唯一解
∵kAC=2且kBC=-2,
∴線在x軸上的交點位于A、B之間時,k<-2或k>2
綜上所述,原方程有唯一實數(shù)解時,k<-2或k>2或k=±$\sqrt{3}$
故答案為:k<-2或k>2或k=±$\sqrt{3}$.
點評 本題給出方程有唯一的實數(shù)解,求參數(shù)k的值或范圍.著重考查了直線方程、圓的方程和直線與圓的位置關(guān)系等知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{5}$ | B. | 5$\sqrt{2}$ | C. | 6 | D. | 2$\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2n | B. | (-2)n | C. | -4n | D. | (-4)n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 36 | D. | 72 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com