4.方程$\sqrt{1-{x}^{2}}$=kx+2有唯一解,則實數(shù)k的范圍是k<-2或k>2或k=±$\sqrt{3}$.

分析 由題意,方程左邊對應(yīng)的函數(shù)圖象是以原點為圓心、半徑為1的圓的上半圓,右邊對應(yīng)的函數(shù)圖象是經(jīng)過定點C(0,2)且斜率為k的一條直線.可得當(dāng)直線與半圓相切時或直線在x軸上的交點位于(-1,0)和(1,0)之間時,原方程有唯一的實數(shù)解.由此建立關(guān)于k的代數(shù)關(guān)系式,即可得到實數(shù)k的范圍.

解答 解:設(shè)y1=$\sqrt{1-{x}^{2}}$,
表示以原點為圓心、半徑為1的圓的上半圓(含端點A、B)
設(shè)y2=kx+2,表示經(jīng)過定點C(0,2)且斜率為k的一條直線
當(dāng)直線y2=kx+2與半圓y1=$\sqrt{1-{x}^{2}}$相切時,原方程有唯一解
此時原點到直線的距離等于1,得$\frac{2}{\sqrt{1+{k}^{2}}}$=1,解之得k=±$\sqrt{3}$
當(dāng)直線在x軸上的交點位于A、B之間時,原方程也有唯一解
∵kAC=2且kBC=-2,
∴線在x軸上的交點位于A、B之間時,k<-2或k>2
綜上所述,原方程有唯一實數(shù)解時,k<-2或k>2或k=±$\sqrt{3}$
故答案為:k<-2或k>2或k=±$\sqrt{3}$.

點評 本題給出方程有唯一的實數(shù)解,求參數(shù)k的值或范圍.著重考查了直線方程、圓的方程和直線與圓的位置關(guān)系等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點P為直線l:x-2y-3=0 上的動點,A(0,1),B(4,3),則|AP|+|BP|的最小值為( 。
A.2$\sqrt{5}$B.5$\sqrt{2}$C.6D.2$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.當(dāng)m為何值時,方程x2-4|x|+5=m有4個互不相等的實數(shù)根?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若數(shù)列{an}的前n項和Sn=$\frac{2}{3}$an-$\frac{2}{3}$,則數(shù)列{an}的通項公式an等于( 。
A.-2nB.(-2)nC.-4nD.(-4)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.關(guān)于x的方程$\sqrt{4-{x}^{2}}$=$\frac{1}{2}$(x-2)+3解的個數(shù)為2個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知空間四邊形ABCD,E、H分別是AB、AD的點,F(xiàn)、G分別是邊BC、DC的點(如圖),且EFGH是矩形,求證:
(1)AC∥面EFGH.
(2)求異面直線AC與BD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函f(x)=$\left\{\begin{array}{l}{2cos\frac{πx}{3}(x≤2000)}\\{{2}^{x-2008}(x>2000)}\end{array}\right.$ 則f[f(2015)]等于( 。
A.$\sqrt{3}$B.-$\sqrt{3}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知等差數(shù)列{an}中,a3+a7=8,則該數(shù)列前9項和S9等于( 。
A.4B.8C.36D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.${(-8)^{\frac{2}{3}}}$=4,${2^{{{log}_2}3}}$=2.

查看答案和解析>>

同步練習(xí)冊答案