【題目】已知是定義在上的奇函數(shù),且,若,時,有成立.

(Ⅰ)判斷上的單調(diào)性,并證明;

(Ⅱ)解不等式

(Ⅲ)若對所有的恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)減函數(shù)(2)(3).

【解析】試題分析:

(Ⅰ)根據(jù)單調(diào)性定義,設(shè),作差,由奇函數(shù)的定義化為,再利用已知條件得,從而得函數(shù)為減函數(shù);

(Ⅱ)由減函數(shù)的定義得,但還要注意定義域,因此有

(Ⅲ)題設(shè)不等式恒成立,即恒成立,恒成立,作為的一次不等式,只要時不等式成立即可.

試題解析:

(Ⅰ)上是減函數(shù),

任取,則

為奇函數(shù),

由題知,,

,即,

上單調(diào)遞減.

(Ⅱ)上單調(diào)遞減,

解得不等式的解集為.

(Ⅲ),上單調(diào)遞減,

上,

問題轉(zhuǎn)化為,即,對任意的恒成立,

,即,對任意恒成立,

則由題知,解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:

收入x/萬元

8.2

8.6

10.0

11.3

11.9

支出y/萬元

6.2

7.5

8.0

8.5

9.8

根據(jù)上表可得回歸直線方程x+,其中=0.76, ,據(jù)此估計(jì),該社區(qū)一戶居民年收入為15萬元家庭的年支出為_____萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解該校學(xué)生對于某項(xiàng)運(yùn)動的愛好是否與性別有關(guān),通過隨機(jī)抽查110名學(xué)生,得到如下2×2的列聯(lián)表:

喜歡該項(xiàng)運(yùn)動

不喜歡該項(xiàng)運(yùn)動

總計(jì)

40

20

60

20

30

50

總計(jì)

60

50

110

由公式K2= ,算得K2≈7.61
附表:

p(K2≥k0

0.025

0.01

0.005

k0

5.024

6.635

7.879

參照附表,以下結(jié)論正確是(
A.有99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
B.有99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)若是奇函數(shù),求的值,并判斷的單調(diào)性(不用證明);

(2)若函數(shù)在區(qū)間(0,1)上有兩個不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|< )的圖象過點(diǎn)B(0,﹣1),且在( , )上單調(diào),同時f(x)的圖象向左平移π個單位之后與原來的圖象重合,當(dāng)x1 , x2∈(﹣ ,﹣ ),且x1≠x2時,f(x1)=f(x2),則f(x1+x2)=(
A.﹣
B.﹣1
C.1
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,平面平面,四邊形為平行四邊形, , , .

(1)求證: 平面;

(2)求到平面的距離;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】<中華人民共和國個人所得稅法>規(guī)定,公民全月工資、薪金所得不超過3500元的部分不必納稅,超過3500元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:

(1)若某人一月份應(yīng)繳納此項(xiàng)稅款為280元,那么他當(dāng)月的工資、薪金所得是多少?

(2)假設(shè)某人一個月的工資、薪金所得是元(0<10000),試將其當(dāng)月應(yīng)繳納此項(xiàng)稅款元表示成關(guān)于的函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣cosx,x∈[﹣ , ],則滿足f(x0)>f( )的x0的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:指數(shù)函數(shù)f(x)=(m+1)x是減函數(shù);命題q:x∈R,x2+x+m<0,若“p或q”是真命題,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案