函數(shù)f(x)=ln(x+1)-x的最大值是
 
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,函數(shù)的最值及其幾何意義
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)題意先求出函數(shù)的定義域,然后求出函數(shù)的導(dǎo)函數(shù)y′,令y′=0,求出極值點(diǎn),然后求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的最值;
解答: 解:函數(shù)y=ln(1+x)-x的定義域?yàn)椋?1,+∞)
函數(shù)的導(dǎo)函數(shù)為y′=
1
1+x
-1,
y′=0,
1
1+x
-1=0,解得x=0,y′>0,可得x∈(-1,0);
可知函數(shù)y=ln(1+x)-x的單調(diào)遞增區(qū)間為(-1,0);
函數(shù)y=ln(1+x)-x的單調(diào)減區(qū)間為(0,+∞).
所以x=0時,函數(shù)取得最大值:0.
故答案為:0.
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的最值的求法,考查運(yùn)算求解能力、推理論證能力,數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(
π
6
-2x)+cos(2x+
π
6
)+sin(2x+
π
3
)-sin(
π
3
-2x).
(1)求函數(shù)f(x)在[0,
π
2
]上的值域;
(2)在銳角△ABC中,角A,B,C所對的邊分別是a,b,c,且f(A)=1,a=1,試求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈(0,
π
2
),則函數(shù)y=
sin2x
2sin2x+1
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=60°,c=2
2
,周長為2(1+
2
+
3
),則∠A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程是y=
3
x,它的一個焦點(diǎn)在拋物線y2=24x的準(zhǔn)線上,則雙曲線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
mx2-4mx+m+3
的定義域?yàn)镽,判斷函數(shù)g(x)=x2+2mx+1的零點(diǎn)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
16
-
y2
20
=1上一點(diǎn)P到它的右焦點(diǎn)距離是9,那么點(diǎn)P到它的左焦點(diǎn)的距離是( 。
A、17
B、17或1
C、4
5
+9
D、以上都錯

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過原點(diǎn)且傾斜角為60°的直線被圓x2+2-4y=0所截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

西安市某省級示范高中為了了解學(xué)校食堂的服務(wù)質(zhì)量情況,對在校就餐的1400名學(xué)生按5%比例進(jìn)行問卷調(diào)查,把學(xué)生對食堂的“服務(wù)滿意度”與“價格滿意度”都分為五個等級:1級(很不滿意);2級(不滿意);3級(一般);4級(滿意);5級(很滿意),其統(tǒng)計結(jié)果如下表所示(服務(wù)滿意度為x,價格滿意度為y).
價格滿意度
12345

務(wù)
滿

111220
221341
337884
414641
501231
(Ⅰ)作出“價格滿意度”的頻率分布直方圖;
(Ⅱ)為改進(jìn)食堂服務(wù)質(zhì)量,現(xiàn)從滿足“x≤5且y<3”的人中隨機(jī)選取2人參加座談會,記其中滿足“x<3且y=1”的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案