給如圖所示的4個區(qū)域涂上顏色,可得一個漂亮的“太極圖”,現(xiàn)有紅、黑、黃、藍(lán)四種顏色供選用,要求每個區(qū)域只能涂一種顏色,且相鄰的區(qū)域顏色不同,則有
 
種不同的涂法.
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:排列組合
分析:由題意可知,需要分三類,分三類,第一類,用4種顏色,第二類,用3種顏色,第三類,用2種顏色,根據(jù)分類計(jì)數(shù)原理可得答案
解答: 解:分三類,第一類,用4種顏色,每個區(qū)域只能涂一種顏色,有
A
4
4
=24種,
第二類,用3種顏色,有
C
3
4
=4種,先涂A有3種選擇,B也有3種選擇,C有2種選擇,故有4×3×3×2=72種,
第三類,用2種顏色,A與D一樣,B與C一樣,有
A
2
4
=12種,
根據(jù)分類計(jì)數(shù)原理,一共有24+72+12=108種
故答案為:108
點(diǎn)評:本題考查了分類計(jì)數(shù)原理,關(guān)鍵是分類,屬于基礎(chǔ)題,(若AB相同,有
A
3
3
=6,若AB不同,有3×2×2=12,共6+12=18,兩者一樣,A有3種選擇,B也有3種選擇,包含相同和不相同)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的空間直角坐標(biāo)系O-xyz中,一個四面體的頂點(diǎn)坐標(biāo)分別是(0,0,2),(2,2,0),(2,1,1),(2,2,2).給出編號為①,②,③,④的四個圖,則該四面體的側(cè)視圖和俯視圖分別為( 。
A、①和②B、①和③
C、③和②D、④和②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知丨
z+1
z
丨=1,求丨z丨范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC三條邊的邊長分別為a,b,c,對應(yīng)的角分別為A,B,C
(1)設(shè)2b=a+c,且角B的取值集合為M,當(dāng)x∈M時,求f(x)=sin(4x-
π
6
)的值域;
(2)設(shè)角B的平分線交邊AC于D,且角B。1)中的最大值(不含2b=a+c),
AD
=2
DC
,BD=4
3
,求其三邊a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是數(shù)列{an}的前n項(xiàng)和,且對任意n∈N*,有4an-3Sn=
1
3
(22n+1+1),
(1)求{
an
4n
}的通項(xiàng)公式;
(2)求數(shù)列{
an
2n-2
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
1
x-1
<1的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為偶函數(shù),且∫02f(x)dx=3,計(jì)算定積分∫-223f(x)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A為函數(shù)y=ln(-x2-2x+8)的定義域,集合B為函數(shù)y=x+
1
x+2
(x>-2)的值域,集合C為不等式(ax-1)(x-2)≤0的解集,(1)求A∩B;(2)若C⊆CRA,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中.
(1)若a2+a3+a10+a11=48,求a6+a7
(2)若a1-a4-a8-a12+a15=2,求a3+a13

查看答案和解析>>

同步練習(xí)冊答案