17.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.8B.10C.12D.14

分析 由已知中的三視圖,畫出幾何體的直觀圖,數(shù)形結(jié)合可得幾何體的體積.

解答 解:由已知中的三視圖,可得該幾何體的直觀圖如下所示:

三棱錐A-BCD的體積為:$\frac{1}{3}$×$\frac{1}{2}$×3×4×4=8,
四棱錐C-AFED的體積為:$\frac{1}{3}$×$\frac{1}{2}$×(2+4)×2×3=6,
故組合體的體積V=6+8=14,
故選:D

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱柱的體積和表面積,棱錐的體積和表面積,簡(jiǎn)單幾何體的三視圖,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知點(diǎn)G(5,4),圓C1:(x-1)2+(y-4)2=25,過點(diǎn)G的動(dòng)直線l與圓C1,相交于兩點(diǎn)E、F,線段EF的中點(diǎn)為C.
(Ⅰ)求點(diǎn)C的軌跡C2的方程;
(Ⅱ)若過點(diǎn)A(1,0)的直線l1:kx-y-k=0,與C2相交于兩點(diǎn)P、Q,線段PQ的中點(diǎn)為M,l1與l2:x+2y+2=0的交點(diǎn)為N,求證:|AM|•|AN|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在平面直角坐標(biāo)系xOy中,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點(diǎn)為F,上頂點(diǎn)為B,M 為線段BF 的中點(diǎn),若∠MOF=30°,則該橢圓的離心率為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.給出下列四個(gè)命題:
①已知m,n是常數(shù),“mn<0”是“mx2+ny2=1表示雙曲線的充分不必要條件”;
②命題p:“?x∈R,sinx≤1”的否定是¬p:“?x0∈R,sinx0>1”;
③已知命題p和q,若p∨q是假命題,則p與q中必一真一假;
④命題“若a>b>0,則a2>b2”的逆命題是假命題.
其中真命題的序號(hào)是(  )
A.①②④B.①③④C.②④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn)(A在第一象限),過點(diǎn)A作準(zhǔn)線l的垂線,垂足為E,若∠AFE=60°,則△AFE的面積為( 。
A.$4\sqrt{3}$B.$2\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載了公元前344年商鞅制造一種標(biāo)準(zhǔn)量器-商鞅銅方升,其三視圖(單位:寸)如圖所示,若π取3,其體積為12.6(立方寸),則圖中x的為( 。
A.2.5B.3C.3.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在等差數(shù)列{an}中,已知a3+a8=6,則3a2+a16的值為( 。
A.24B.18C.16D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)$f(x)=-x+\frac{1}{x}$在$[{-2,-\frac{1}{3}}]$上的最大值是(  )
A.$\frac{3}{2}$B.$-\frac{8}{3}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),(a>0,a≠1)
(1)若a=2,且函數(shù)f(x)的定義域?yàn)閇3,36],求f(x)的最值;
(2)求使f(x)-g(x)>0的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案