分析 作出可行域,平移目標函數(shù)和利用截距的意義即可得出
解答 解:設f(x)=ax2+bx+2,
由題意可得分(0)=2>0,可得a>0,
$\left\{\begin{array}{l}{f(1)<0}\\{f(2)>0}\end{array}\right.$,即$\left\{\begin{array}{l}{a+b+2<0}\\{4a+2b+2>0}\end{array}\right.$,化為$\left\{\begin{array}{l}{a+b+2<0}\\{2a+b+1>0}\end{array}\right.$,
故所求的不等關系為$\left\{\begin{array}{l}{z>0}\\{a+b+2<0}\\{2a+b+1>0}\end{array}\right.$,(*)
可行域如圖陰影部分,
令z=2a-b,在點A處取得最小值5,
綜上可知z的取值范圍為(5,+∞),
故答案為:(5,+∞)
點評 熟練掌握二次函數(shù)的性質和函數(shù)零點的判定定理、正確作出可行域、線性規(guī)劃的有關知識等是解題的關鍵
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,+∞) | B. | [0,+∞) | C. | (-∞,0) | D. | (-∞,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{a}<\frac{1}$ | B. | $\frac{a}>1$ | C. | $a+b>2\sqrt{ab}$ | D. | 2a>2b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1]∪(3,+∞) | B. | [1,3) | C. | [1,3] | D. | (-∞,1]∪[3,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com