若變量x,y滿足條件
y≤2x
x+y≤1
y≥-1
,則x+2y的取值范圍為(  )
A、[-
5
2
,0]
B、[0,
5
2
]
C、[-
5
2
5
3
]
D、[-
5
2
,
5
2
]
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:由約束條件作出可行域,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)求得答案.
解答: 解:由約束條件
y≤2x
x+y≤1
y≥-1
作出可行域如圖,

聯(lián)立
y=-1
y=2x
,解得A(-
1
2
,-1);
聯(lián)立
y=2x
x+y=1
,解得C(
1
3
,
2
3
).
令z=x+2y,則y=-
x
2
+
z
2

由圖可知,當(dāng)直線y=-
x
2
+
z
2
過A時,直線在y軸上的截距最小,z最小為-
5
2
;
當(dāng)直線y=-
x
2
+
z
2
過C時,直線在y軸上的截距最大,z最大為
5
3

∴x+2y的取值范圍為[-
5
2
5
3
]

故選:C.
點評:本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解不等式組:
x2+3x-10<0
x+1
x
>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立坐標(biāo)系,已知曲線C的極坐標(biāo)方程式為ρ=2,P是曲線C上的動點,A(2,0),M是線段AP的中點,曲線C1的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
m.
(Ⅰ)求點M軌跡C2的直角坐標(biāo)方程;
(Ⅱ)當(dāng)曲線C1與曲線C2有兩個公共點時,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,如果x1,x2∈R+,且x1≠x2,下列關(guān)于f(x)的性質(zhì);
①(x1-x2)[f(x1)-f(x2)]>0;
f(x1)+f(x2)
2
<f(
x1+x2
2
);
③f(-x)=f(x);
f(x1)+f(x2)
2
>f(
x1+x2
2
).
其中正確的是( 。
A、①②B、①③C、②④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三個數(shù)a=(-0.3)0,b=0.32,c=20.3,則下列結(jié)論成立的是( 。
A、b<a<c
B、a<c<b
C、b<c<a
D、a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

自點A(-3,3)發(fā)出的光線l經(jīng)x軸反射,其反射光線與圓(x-2)2+(y-2)2=1相切,求光線l所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊與單位圓的交點為(
1
2
3
2
),則sinα=( 。
A、
1
2
B、
3
2
C、
3
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正項等比數(shù)列{an}的公比為2,若a2a10=16,則a9的值是( 。
A、8B、16C、32D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列三個數(shù)a=ln
3
2
-
3
2
,b=lnπ-π,c=ln3-3,大小順序正確的是( 。
A、b>c>a
B、a>b>c
C、a>c>b
D、b>a>c

查看答案和解析>>

同步練習(xí)冊答案