分析 根據(jù)題意確定出M的特征多次式,進而求出λ的值,得到對應的特征向量,表示出α,即可求出所求式子的值.
解答 解:矩陣M的特征多次式為f(λ)=(λ-1)2-4=0,
解得:λ1=3,λ2=-1,
對應的特征向量分別為[$\underset{\stackrel{1}{\;}}{-1}$]和[$\underset{\stackrel{1}{\;}}{1}$],
∵α=[$\underset{\stackrel{1}{\;}}{-1}$]+2[$\underset{\stackrel{1}{\;}}{1}$],
∴M5α=35[$\underset{\stackrel{1}{\;}}{-1}$]+2×(-1)5[$\underset{\stackrel{1}{\;}}{1}$]=[$\underset{\stackrel{{3}^{5}+2}{\;}}{-{3}^{5}+2}$]=[$\underset{\stackrel{245}{\;}}{-241}$].
點評 此題考查了特征值、特征向量的應用,確定出對應的特征向量是解本題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 10 | C. | 12 | D. | 15 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com