4.某班50名學(xué)生中有女生20名,按男女比例用分層抽樣的方法,從全班學(xué)生中抽取部分學(xué)生進(jìn)行調(diào)查,已知抽到的女生有4名,則本次調(diào)查抽取的人數(shù)是( 。
A.8B.10C.12D.15

分析 根據(jù)分層抽樣原理,列出算式即可求出結(jié)論.

解答 解:設(shè)本次調(diào)查抽取的人數(shù)是n,則
$\frac{4}{n}=\frac{20}{50}$,∴n=10.
故選:B.

點(diǎn)評(píng) 本題主要考查了分層抽樣的定義與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知M=$[\begin{array}{l}{1}&{-2}\\{-2}&{1}\end{array}]$,α=$[\begin{array}{l}{3}\\{1}\end{array}]$,試計(jì)算M5α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知直角梯形ACEF與等腰梯形ABCD所在的平面互相垂直,EF∥AC,EF═$\frac{1}{2}$AC,EC⊥AC,AD=DC=CB=CE=$\frac{1}{2}$AB=1.
(Ⅰ)證明:BC⊥AE;
(Ⅱ)求二面角D-BE-F的余弦值;
(Ⅲ)判斷直線DF與平面BCE的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.化簡(jiǎn)$\frac{sin(2π-θ)cos(π+θ)cos(\frac{π}{2}+θ)cos(\frac{11π}{2}-θ)}{cos(π-θ)sin(3π-θ)sin(-π-θ)sin(\frac{9π}{2}+θ)}$的值是(  )
A.-tanθB.tanθC.-cosθD.sinθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.拋物線y2=2px(p>0)的焦點(diǎn)為F,其準(zhǔn)線與雙曲線y2-x2=1相交于A,B兩點(diǎn),若△ABF為等邊三角形,則p=$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)命題p:?x0∈(0,+∞),3x0+x0=$\frac{1}{2016}$;命題q:?x>0,x+$\frac{1}{x}$≥2,則下列命題為真命題的是(  )
A.p∧qB.(?p)∧qC.p∧(?q)D.(?p)∧(?q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)x,y滿足$\left\{\begin{array}{l}2x+y≥4\\ x-y≥1\\ x-2y≤2\end{array}\right.$,則z=x+y的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若a<b<0,則下列不等式不成立的是( 。
A.$\frac{1}{a}>\frac{1}$B.2a>2bC.|a|>|b|D.a3<b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題p:若x>0,則函數(shù)y=x+$\frac{1}{2x}$的最小值為1,命題q:若x>1,則x2+2x-3>0,則下列命題是真命題的是( 。
A.p∨qB.p∧qC.(¬p)∧(¬q)D.p∨(¬q)

查看答案和解析>>

同步練習(xí)冊(cè)答案