9.解關(guān)于x的不等式:(ax-1)(x-1)>0.

分析 討論a=0、a≠0時(shí),再分a<0、0<a<1和a=1、a>1時(shí),求出對(duì)應(yīng)不等式的解集.

解答 解:因?yàn)殛P(guān)于x的不等式:(ax-1)(x-1)>0,
所以當(dāng)a=0時(shí),即(-1)•(x-1)>0,
此時(shí)解集為(-∞,1);
當(dāng)a≠0時(shí),即a(x-1)(x-$\frac{1}{a}$)>0;
①a<0時(shí)即(x-1)(x-$\frac{1}{a}$)<0,其中$\frac{1}{a}$<0<1,
此時(shí)不等式的解集為($\frac{1}{a}$,1);
②0<a<1時(shí)即(x-1)(x-$\frac{1}{a}$)>0,其中$\frac{1}{a}$>1,
此時(shí)不等式的解集為(-∞,1)∪($\frac{1}{a}$,+∞);
③a=1時(shí)即(x-1)2>0,
此時(shí)不等式的解集為{x|x∈R且x≠1};
④a>1時(shí)即(x-1)(x-$\frac{1}{a}$)>0,其中$\frac{1}{a}$<1,
此時(shí)不等式的解集為(-∞,$\frac{1}{a}$)∪(1,+∞).

點(diǎn)評(píng) 本題考查了含有字母系數(shù)的不等式的解法與應(yīng)用問(wèn)題,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.定義某種運(yùn)算S=a?b,運(yùn)算原理如圖所示,則式子$[{({2tan\frac{5π}{4}})?lne}]-[{lg100?{{({\frac{1}{3}})}^{-1}}}]$的值是( 。
A.-8B.-4C.-3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知圓x2+y2=9內(nèi)有一點(diǎn)P(-1,2),AB為過(guò)點(diǎn)P的弦且傾斜角為θ.
(1)若θ=135°,求弦AB的長(zhǎng);
(2)當(dāng)弦AB被點(diǎn)P平分時(shí),求出直線(xiàn)AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為$\frac{1}{2}$與p,且乙投球2次均未命中的概率為$\frac{1}{16}$.
(Ⅰ)求甲投球2次,至少命中1次的概率;
(Ⅱ)若甲、乙兩人各投球2次,求兩人共命中3次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ax2+(2a+1)x+b,其中a,b∈R.
(Ⅰ)當(dāng)a=1,b=-4時(shí),求函數(shù)f(x)的零點(diǎn);
(Ⅱ)如果函數(shù)f(x)的圖象在直線(xiàn)y=x+2的上方,證明:b>2;
(Ⅲ)當(dāng)b=2時(shí),解關(guān)于x的不等式f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知f(x)=lnx-bx+a+1
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)b=1,若存在x∈(0,+∞)使得f(x)≥0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知x=3是函數(shù)y=alnx+x2-10x的一個(gè)極值點(diǎn),則實(shí)數(shù)a=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.某校組織“中國(guó)詩(shī)詞”競(jìng)賽,在“風(fēng)險(xiǎn)答題”的環(huán)節(jié)中,共為選手準(zhǔn)備了A、B、C三類(lèi)不同的題目,選手每答對(duì)一個(gè)A類(lèi)、B類(lèi)或C類(lèi)的題目,將分別得到300分、200分、100分,但如果答錯(cuò),則相應(yīng)要扣去300分、200分、100分,根據(jù)平時(shí)訓(xùn)練經(jīng)驗(yàn),選手甲答對(duì)A類(lèi)、B類(lèi)或C類(lèi)題目的概率分別為0.6、0.75、0.85,若腰每一次答題的均分更大一些,則選手甲應(yīng)選擇的題目類(lèi)型應(yīng)為B(填A(yù)、B或C)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.平面直角坐標(biāo)系xoy中,點(diǎn)A(2,0)在曲線(xiàn)C:$\left\{\begin{array}{l}{x=acosφ}\\{y=sinφ}\end{array}$(φ為參數(shù),a>0)上.以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,若點(diǎn)M,N的極坐標(biāo)分別為(ρ1,θ),(ρ2,θ+$\frac{π}{2}$),且點(diǎn)M,N都在曲線(xiàn)C上,則$\frac{1}{ρ_1^2}+\frac{1}{ρ_2^2}$=$\frac{5}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案