分析 (1)利用作差法,作差并配方即可證明,
(2)由基本不等式可得到2$\sqrt{{x}_{1}{x}_{2}}$≤x1+x2=1,同時(shí)加上1即可得到1≤x1+x2+2$\sqrt{{x}_{1}{x}_{2}}$≤2,配方即可證明.
解答 解:(1)∵a≥0,b≥0,
∴$\frac{a+b}{2}$-$\sqrt{ab}$=$\frac{a+b-2\sqrt{ab}}{2}$=$\frac{(\sqrt{a}-\sqrt)^{2}}{2}$≥0,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào),
∴$\frac{a+b}{2}$≥$\sqrt{ab}$,
(2)由基本不等式知0≤2$\sqrt{{x}_{1}{x}_{2}}$≤x1+x2=1,
于是有1≤x1+x2+2$\sqrt{{x}_{1}{x}_{2}}$≤2,
即1≤($\sqrt{{x}_{1}}$+$\sqrt{{x}_{2}}$)2≤2,
∴1≤$\sqrt{{x}_{1}}$+$\sqrt{{x}_{2}}$≤$\sqrt{2}$.
點(diǎn)評(píng) 本題考查了作差法比較大小以及基本不等式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 等腰三角形 | B. | 直角三角形 | ||
C. | 等腰直角三角形 | D. | 等腰或直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{(\overrightarrow{a}•\overrightarrow)\overrightarrow{a}}{|\overrightarrow{|}^{2}}$-$\overrightarrow$ | B. | $\frac{2(\overrightarrow{a}•\overrightarrow)\overrightarrow}{|\overrightarrow{|}^{2}}$-$\overrightarrow{a}$ | C. | $\frac{(\overrightarrow{a}•\overrightarrow)\overrightarrow{a}}{|\overrightarrow{a}{|}^{2}}$$-\overrightarrow$ | D. | $\frac{2(\overrightarrow{a}•\overrightarrow)\overrightarrow{a}}{|\overrightarrow{a}{|}^{2}}$$-\overrightarrow$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com