18.已知函數(shù)f(x)=xlnx-2x+4,是否存在實數(shù)m,使得m+mf′(x)≤xf(x)在x∈(1,+∞)上恒成立,求實數(shù)m的最大值;若不存在,請說明理由.

分析 問題轉(zhuǎn)化為m≤$\frac{x(xlnx-2x+4)}{lnx}$在x∈(1,+∞)上恒成立,令g(x)=$\frac{x(xlnx-2x+4)}{lnx}$,x∈(1,+∞),根據(jù)函數(shù)的單調(diào)性求出g(x)的最小值即m的最大值即可.

解答 解:∵f(x)=xlnx-2x+4的定義域是(0,+∞),
∴f′(x)=lnx-1,
若m+mf′(x)≤xf(x)在x∈(1,+∞)上恒成立,
即m≤$\frac{x(xlnx-2x+4)}{lnx}$在x∈(1,+∞)上恒成立,
令g(x)=$\frac{x(xlnx-2x+4)}{lnx}$,x∈(1,+∞),
則g′(x)=$\frac{2{x(lnx)}^{2}-4xlnx+2x+4lnx-4}{{(lnx)}^{2}}$=$\frac{2(lnx-1)[x(lnx-1)+2]}{{(lnx)}^{2}}$,
令h(x)=xlnx-x+2,x>1,
則h′(x)=lnx>0,h(x)在(1,+∞)遞增,
∴h(x)>h(1)=1>0,
故令g′(x)>0,解得:x>e,令g′(x)<0,解得:1<x<e,
∴g(x)在(1,e)遞減,在(e,+∞)遞增,
∴g(x)≥g(e)=4e-e2
∴m≤4e-e2,
故m的最大值是4e-e2

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)正實數(shù)x、y滿足x+2y=xy,且x+2y>m2+2m恒成立,試確定實數(shù)m的取值范圍;
(2)已知a、b、c均為正數(shù),且a+b+c=1,求證:$\frac{1}{a}+\frac{1}+\frac{1}{c}$≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長線交⊙O于N,過N點(diǎn)的切線CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為$2\sqrt{3},OA=OM$,求MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=ax-(a+1)lnx,其中a≥-1,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知定義在R上的函數(shù)f(x)滿足f(1)=4,f′(x)<2,則f(x3)>2x3+2的解集是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.已知曲線C1的極坐標(biāo)方程為ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$),曲線C2的極坐標(biāo)方程為ρsinθ=a(a>0),射線θ=φ,θ=φ-$\frac{π}{4}$,θ=φ+$\frac{π}{2}$,與曲線C1分別交異于極點(diǎn)O的四點(diǎn)A、B、C、D.
(Ⅰ)若曲線C1關(guān)于曲線C2對稱,求a的值,并把曲線C1和曲線C2化成直角坐標(biāo)方程;
(Ⅱ)求|OA|•|OC|+|OB|•|OD|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知C點(diǎn)在⊙O直徑BE的延長線上,CA切⊙O于A點(diǎn),CD是∠ACB的平分線且交AE于點(diǎn)F,交AB于點(diǎn)D.
(1)求∠ADF的度數(shù);
(2)若AB=AC,求$\frac{AC}{BC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,異面直線AB,CD互相垂直,CF是它們的公垂線段,且F為AB的中點(diǎn),作DE$\stackrel{∥}{=}$CF,連接AC,BD,G為BD的中點(diǎn),AB=AC=AE=BE=2.
(1)在平面ABE內(nèi)是否存在一點(diǎn)H,使得AC∥GH?若存在,求出點(diǎn)k所在的位置,若不存在,請說明理由;
(2)求二面角A-DB-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示,過點(diǎn)P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,且AE∥CD.
(Ⅰ)證明:P、B、F、A四點(diǎn)共圓;
(Ⅱ)若四邊形PBFA的外接圓的半徑為$\sqrt{13}$,且PC=CF=FD=3,求圓O的半徑.

查看答案和解析>>

同步練習(xí)冊答案