分析 (1)以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線PB與EC所成角的余弦值.
(2)求出平面PAB的一個(gè)法向量和平面AEC的法向量,利用向量法能求出λ的值.
解答 解:(1)以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,
則A(0,0,0),B(2,0,0),D(0,4,0),P(0,0,2),C(2,4,0),
∵$\frac{PE}{PD}$=λ,∴設(shè)E(0,a,b),則$\overrightarrow{PE}$=(0,a,b-2),
$\overrightarrow{PD}$=(0,4,-2),$\overrightarrow{PE}=λ\overrightarrow{PD}$,即(0,a,b-2)=λ(0,4,-2),
解得a=4λ,b=2-2λ,∴E(0,4λ,2-2λ),
當(dāng)$λ=\frac{1}{2}$時(shí),E(0,2,1),$\overrightarrow{PB}$=(2,0,-2),$\overrightarrow{EC}$=(2,2,-1),
cos<$\overrightarrow{PB},\overrightarrow{EC}$>=$\frac{\overrightarrow{PB}•\overrightarrow{EC}}{|\overrightarrow{PB}|•|\overrightarrow{EC}|}$=$\frac{6}{2\sqrt{2}×3}$=$\frac{\sqrt{2}}{2}$,
∴異面直線PB與EC所成角的余弦值為$\frac{\sqrt{2}}{2}$.
(2)$\overrightarrow{AP}$=(0,0,2),$\overrightarrow{AB}$=(2,0,0),$\overrightarrow{AC}$=(2,4,0),$\overrightarrow{AE}$=(0,4λ,2-2λ),
由題意知$\overrightarrow{AD}$=(0,4,0)是平面PAB的一個(gè)法向量,
充平面AEC的一個(gè)法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=4λy+(2-2λ)z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=2x+4y=0}\end{array}\right.$,取x=2,得平面AEC的法向量$\overrightarrow{m}$=(2,-1,$\frac{2λ}{1-λ}$),
∵平面PAB與平面ACE所成二面角的余弦值為$\frac{1}{3}$,
∴|cos<$\overrightarrow{m},\overrightarrow{n}$>|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{5+(\frac{2λ}{1-λ})^{2}}}$=$\frac{1}{3}$,
解得$λ=\frac{1}{2}$.
點(diǎn)評 本題考查異面直線所成角的余弦值的求法,考查滿足條件的實(shí)數(shù)值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
投入資金x | 1 | 2 | 3 | 4 | 5 |
利潤y | 2 | 3 | 5 | 6 | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\root{n}{{a}^{n}}$=a | B. | ($\frac{n}{m}$)7=n${\;}^{\frac{1}{7}}$m7 | C. | $\root{12}{(-2)^{4}}$=$\root{3}{-2}$ | D. | $\sqrt{\root{3}{9}}$=$\root{3}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com