3.已知等差數(shù)列{an}中a1=20,an=54,Sn=999,則n=( 。
A.27B.28C.29D.30

分析 由已知得${S}_{n}=\frac{n}{2}({a}_{1}+{a}_{n})$=$\frac{n}{2}(20+54)=999$,由此能求出n.

解答 解:∵等差數(shù)列{an}中a1=20,an=54,Sn=999,
∴${S}_{n}=\frac{n}{2}({a}_{1}+{a}_{n})$=$\frac{n}{2}(20+54)=999$,
解得n=27.
故選:A.

點評 本題考查等差數(shù)列的項數(shù)的求法,是基礎題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知集合A={x|x2-6x+5≤0},$B=\{x|y=\sqrt{x-3}\}$,A∩B=( 。
A.[1,3]B.[1,5]C.[3,5]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.若雙曲線$E:\frac{x^2}{a^2}-{y^2}=1(a>0)$的離心率等于$\sqrt{2}$,直線y=kx-1與雙曲線E的右支交于A、B兩點.
(1)求k的取值范圍;
(2)若$|{AB}|=6\sqrt{3}$,點c是雙曲線上一點,且$\overrightarrow{OC}=m(\overrightarrow{OA}+\overrightarrow{OB})$,求k、m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.假設在100件產(chǎn)品中有3件次品,從中任意抽取5件,求下列抽取方法各有多少種?(必須計算出結(jié)果)
(Ⅰ)沒有次品;
(Ⅱ)恰有兩件是次品;
(Ⅲ)至少有兩件是次品.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若點P(sin2θ,cosθ)在第三象限,則角θ的終邊在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某人經(jīng)營一個抽獎游戲,顧客花費3元錢可購買一次游戲機會,每次游戲中,顧客從標有黑1、黑2、黑3、黑4、紅1、紅3的6張卡片中隨機抽取2張,并根據(jù)摸出的卡片的情況進行兌獎,經(jīng)營者將顧客抽到的卡片情況分成以下類別:
A:同花順,即卡片顏色相同且號碼相鄰;
B:同花,即卡片顏色相同,但號碼不相鄰;
C:順子,即卡片號碼相鄰,但顏色不同;
D:對子,即兩張卡片號碼相同;
E:其他,即A,B,C,D以外的所有可能情況,
若經(jīng)營者打算將以上五種類別中最不容易發(fā)生的一種類別對應顧客中一等獎,最容易發(fā)生的一種類別對應顧客中二等獎,其他類別對應顧客中三等獎.
(1)一、二等獎分別對應哪一種類別?(寫出字母即可)
(2)若經(jīng)營者規(guī)定:中一、二、三等獎,分別可獲得價值9元、3元、1元的獎品,假設某天參與游戲的顧客為300人次,試估計經(jīng)營者這一天的盈利.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.一個球從32米的高處自由落下,每次著地后又回到原來高度的一半,則它第6次著地時,共經(jīng)過的路程是94米.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.有四個數(shù):前三個成等差數(shù)列,后三個成等比數(shù)列.首末兩數(shù)和為16,中間兩數(shù)和為12.求這四個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.函數(shù)f(x)=loga(ax-1)(0<a<1)
(1)求f(x)的定義域;            
(2)討論函數(shù)f(x)的單調(diào)性;
(3)解方程f(2x)=f-1(x).

查看答案和解析>>

同步練習冊答案