18.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)點(diǎn)A(0,1),且離心率為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若直線l:y=k(x-1)+1與橢圓E交于不同兩點(diǎn)M,N,線段MN的中點(diǎn)為P,O為坐標(biāo)原點(diǎn),且直線OP的斜率存在,求直線l與直線PO的斜率之積.

分析 (I)由題意知$b=1,\frac{c}{a}=\frac{{\sqrt{2}}}{2}$,由此能求出橢圓E的方程.
(II)設(shè)M(x1,y1),N(x2,y2)把y=k(x-1)+1代入$\frac{x^2}{2}+{y^2}=1$,得(1+2k2)x2-(4k2-4k)x+2k2-4k=0,由此利用根的判別式、韋達(dá)定理、直線的斜率、橢圓性質(zhì),結(jié)合已知條件能求出直線l與直線PO的斜率之積.

解答 (本小題滿分12分)
解:(I)由題意知$b=1,\frac{c}{a}=\frac{{\sqrt{2}}}{2}$,
又a2=b2+c2,故$a=\sqrt{2}$
∴橢圓E的方程為$\frac{x^2}{2}+{y^2}=1$.…(5分)
(II)設(shè)M(x1,y1),N(x2,y2
把y=k(x-1)+1代入$\frac{x^2}{2}+{y^2}=1$,
整理得(1+2k2)x2-(4k2-4k)x+2k2-4k=0,
由已知有△>0,故${x_1}+{x_2}=\frac{{4{k^2}-4k}}{{1+2{k^2}}}$,…(8分)
y1+y2=k(x1-1)+1+k(x2-1)+1=k(x1+x2-2)+2=$\frac{-2(k-1)}{{1+2{k^2}}}$,…(9分)
于是P$(\frac{{2{k^2}-2k}}{{1+2{k^2}}},\frac{-k+1}{{1+2{k^2}}})$,直線PO的斜率為$-\frac{1}{2k}$,…(11分)
又直線l的斜率為k,∴直線l與直線PO的斜率之積為$-\frac{1}{2}$. …(12分)

點(diǎn)評(píng) 本題考查橢圓方程的求法,考查直線與直線的斜率之積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意根的判別式、韋達(dá)定理、直線的斜率、橢圓性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期
溫差
12月1日12月2日12月3日12月4日12月5日
x(℃)101113128
發(fā)芽數(shù)y(顆)2325302616
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=bx+a;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性方程是可靠地,試問(wèn)(2)中所得到的線性方程是否可靠?
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知圓O1:(x+1)2+y2=1,圓O2:(x-1)2+y2=9,動(dòng)圓P與圓O1外切且與圓O2內(nèi)切,圓心P的軌跡為曲線E.
(1)求E的方程;
(2)過(guò)O2的直線l交E于A,C兩點(diǎn),設(shè)△O1AO2,△O1CO2的面積分別為S1,S2,若S1=2S2,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=xlnx,若直線l過(guò)點(diǎn)(0,-1)并且與曲線y=f(x)相切,則直線l被圓(x-2)2+y2=4截得的弦長(zhǎng)為$\sqrt{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.現(xiàn)有高一年級(jí)的學(xué)生3名,高二年級(jí)的學(xué)生5名,高三年級(jí)的學(xué)生4名,問(wèn):
(1)從中任選1人參加接待外賓的活動(dòng),有多少種不同的選法?
(2)從3個(gè)年級(jí)的學(xué)生中各選1人參加接待外賓的活動(dòng),有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.把4名學(xué)生分到3個(gè)不同的小組里去,每個(gè)小組至少一人,共有36種不同分配.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.某人有甲、乙兩只電子密碼箱,欲存放三份不同的重要文件,則此人使用同一密碼箱存放這三份重要文件的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知f(x)=$\left\{\begin{array}{l}{1+x,x≤0}\\{lo{g}_{2}({x}^{2}+2x+a),x>0}\end{array}\right.$,其中a>0,當(dāng)a=2且f(x0)=1時(shí),x0=0;若函數(shù)f(x)的值域?yàn)镽,則實(shí)數(shù)a的取值范圍是(0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.下列說(shuō)法中正確的有:③④⑤.
①已知直線m,n與平面α,β,若m∥α,n⊥β,α⊥β,則m∥n;
②用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•3…(2n+1)(n∈N*),從n=k到n=k+1時(shí),等式左邊需乘的代數(shù)式是(2k+1)(2k+2);
③對(duì)命題“正三角形與其內(nèi)切圓切于三邊中點(diǎn)”可類比猜想:正四面體與其內(nèi)切球切于各面中心;
④在判斷兩個(gè)變量y與x是否相關(guān)時(shí),選擇了3個(gè)不同的模型,它們的相關(guān)指數(shù)R2分別為:模型1為0.98,模型2為0.80,模型3為0.50.其中擬合效果最好的是模型1;
⑤在空間直角坐標(biāo)系中,點(diǎn)A(1,2,1)關(guān)于y軸的對(duì)稱點(diǎn)A′的坐標(biāo)為(-1,2,-1).

查看答案和解析>>

同步練習(xí)冊(cè)答案