12.若直線l與曲線C滿足下列兩個條件:(i)直線l在點(diǎn)P(x0,y0)處與曲線C相切;(ii)曲線C在點(diǎn)P附近位于直線l的兩側(cè),則稱直線l在點(diǎn)P處“切過”曲線C,下列命題正確的是③④(寫出所有正確命題的編號).
①直線l:y=x+1在點(diǎn)P(0,1)處“切過”曲線C:y=ex
②直線l:y=x-1在點(diǎn)P(1,0)處“切過”曲線C:y=lnx
③直線l:y=-x+π在點(diǎn)P(π,0)處“切過”曲線C:y=sinx
④直線l:y=0在點(diǎn)P(0,0)處“切過”曲線C:y=x3

分析 分別求出每一個命題中曲線C的導(dǎo)數(shù),得到曲線在點(diǎn)P出的導(dǎo)數(shù)值,求出曲線在點(diǎn)P處的切線方程,再由曲線在點(diǎn)P兩側(cè)的函數(shù)值與對應(yīng)直線上點(diǎn)的值的大小判斷是否滿足(ii),即可得出正確的選項.

解答 解:對于①,函數(shù)y=ex的導(dǎo)數(shù)f′(x)=y=ex,則f′(0)=1,則切線方程為y=x+1,
設(shè)g(x)=ex-(x+1),則g′(x)=ex-1,當(dāng)x>0,g′(x)>0,函數(shù)g(x)遞增,
當(dāng)x<0時,g′(x)<0,函數(shù)g(x)遞減,
則當(dāng)x=0時,函數(shù)取得極小值同時也是最小值g(0)=1-1=0,
則g(x)≥g(0)=0,即ex≥x+1,則曲線不在切線的兩側(cè),故①錯誤.
對于②,由y=lnx,得y′=$\frac{1}{x}$,則y′|x=1=1,曲線在P(1,0)處的切線為y=x-1,
由g(x)=x-1-lnx,得g′(x)=1-$\frac{1}{x}$,當(dāng)x∈(0,1)時,g′(x)<0,當(dāng)x∈(1,+∞)時,
g′(x)>0.則g(x)在(0,+∞)上有極小值也是最小值,為g(1)=0.
即y=x-1恒在y=lnx的上方,不滿足曲線C在點(diǎn)P附近位于直線l的兩側(cè),故命題②錯誤,
對于③,由y=sinx,得y′=cosx,則y′|x=π=-1,直線y=-x+π是過點(diǎn)P(0,0)的曲線的切線,
又x∈(-$\frac{π}{2}$,0)時x<sinx,x∈(0,$\frac{π}{2}$)時x>sinx,
滿足曲線C在P(0,0)附近位于直線y=-x+π兩側(cè),故命題③正確;
對于④,由y=x3,得y′=3x2,則y′|x=0=0,直線y=0是過點(diǎn)P(0,0)的曲線C的切線,
又當(dāng)x>0時y>0,當(dāng)x<0時y<0,滿足曲線C在P(0,0)附近位于直線y=0兩側(cè),故命題④正確;
綜上,以上正確的命題是③④.
故答案為:③④.

點(diǎn)評 本題考查命題的真假判斷與應(yīng)用,考查了利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,綜合考查導(dǎo)數(shù)的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知實數(shù)x,y滿足x2+y2-4x+1=0,則$\frac{y}{x}$的最大值為( 。
A.1B.-$\sqrt{3}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.從裝有3個紅球、2個白球的袋中任取2個球,則所取的2個球中至少有1個白球的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若x∈R,不等式|x-1|+|x-2|≤a的解集為非空集合、則實數(shù)a的取值范圍為( 。
A.[1,+∞)B.[2,+∞)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.四個男同學(xué)和三個女同學(xué)站成一排照相,計算下列情況各有多少種不同的站法?
(1)男生甲必須站在兩端;
(2)女生乙不能站在女生丙的左邊;
(3)女生乙不站在兩端,且女生丙不站在正中間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=xlnx,g(x)=$\frac{x}{{e}^{x}}$.
(1)記F(x)=f(x)-g(x),證明:F(x)在(1,2)區(qū)間內(nèi)有且僅有唯一實根;
(2)證明:對?x∈(0,+∞),xlnx>$\frac{x}{{e}^{x}}$-$\frac{2}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{x-1}{{lnx-m{x^2}}}$,m∈R.
(Ⅰ)若1<x<2時,f(x)>1恒成立,求m的取值范圍;
(Ⅱ)若m=0時,令an+1=f(an),n∈N*,a1=$\sqrt{e}$,求證:2nlnan≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,a,b,c分別是角A,B,C的對邊,已知3(b2+c2)=3a2+2bc.
(1)求sinA;
(2)若a=$\frac{3}{2}$,△ABC的面積S=$\frac{\sqrt{2}}{2}$,且b>c,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知cosα=-$\frac{4}{5}$,α∈(π,$\frac{3π}{2}$),則sin$\frac{α}{2}$=$\frac{{3\sqrt{10}}}{10}$.

查看答案和解析>>

同步練習(xí)冊答案