8.某單位老年人、中年人、青年人的人數(shù)如表,用分層抽樣的方法抽取17人進(jìn)行單位管理問(wèn)卷調(diào)查,其中抽到3位老年人,則抽到的中年人人數(shù)為( 。
 類別 人數(shù)
 老年人 15
 中年人
 青年人40 
A.9B.8C.6D.3

分析 根據(jù)老年人的人數(shù)和抽取的人數(shù),得到每個(gè)個(gè)體被抽到的概率,根據(jù)三個(gè)層次的人數(shù),做出總體數(shù),根據(jù)概率求出要抽取的人數(shù).

解答 解:∵單位有15名老年人,n名中年人,40名青年人,
用分層抽樣的方法從他們中抽取了17個(gè)人進(jìn)行體檢,其中有3名老年人,
∴$\frac{3}{15}$=$\frac{17}{15+n+40}$,
∴n=30,
∴抽到的中年人人數(shù)為30×$\frac{3}{15}$=6人,
故選:C

點(diǎn)評(píng) 本題考查分層抽樣方法,解題的關(guān)鍵是在抽樣過(guò)程中每個(gè)個(gè)體被抽到的概率相等,這是解題的關(guān)鍵,注意數(shù)字的運(yùn)算不要出錯(cuò).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知直線l:x-y=1與圓Γ:x2+y2-2x+2y-1=0相交于A,C兩點(diǎn),點(diǎn)B,D分別在圓Γ上運(yùn)動(dòng),且位于直線l的兩側(cè),則四邊形ABCD面積的最大值為$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.等差數(shù)列{an}的首項(xiàng)a1=1,公差d≠0,且a3•a4=a12
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an•2n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知如圖所示的程序框圖,則輸出的結(jié)果是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,sin2B=2sinAsinC,且a>c,cosB=$\frac{1}{4}$,則$\frac{a}{c}$=( 。
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某校舉辦的數(shù)學(xué)與物理競(jìng)賽活動(dòng)中,某班有36名同學(xué),參加的情況如表:(單位:人)
參加物理競(jìng)賽未參加物理競(jìng)賽
參加數(shù)學(xué)競(jìng)賽94
未參加數(shù)學(xué)競(jìng)賽320
(Ⅰ)從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加上述一科競(jìng)賽的概率;
(Ⅱ)在既參加數(shù)學(xué)競(jìng)賽又參加物理競(jìng)賽的9名同學(xué)中,有5名男同學(xué)a,b,c,d,e和4名女同學(xué)甲、乙、丙、。F(xiàn)從這5名男同學(xué)和4名女同學(xué)中各隨機(jī)選1人,求a被選中且甲未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.為推行“新課堂”教學(xué)法,某化學(xué)教師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中個(gè)隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),結(jié)果如表:記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.
 分?jǐn)?shù)[50,59)[60,69)[70,79)[80,89)[90,100]
 甲班頻數(shù) 5 6 4 4 1
 乙班頻數(shù) 1 3 6 5 5
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并判斷“成績(jī)優(yōu)良與教學(xué)方式是否有關(guān)”?
  甲班 乙班 總計(jì)
 成績(jī)優(yōu)良   
 成績(jī)不優(yōu)良   
 總計(jì)   
附:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$
臨界值表:
 P(K2≥k) 0.10 0.05 0.025 0.010
 k 2.706 3.841 5.024 6.635
(2)現(xiàn)從上述40人中,學(xué)校按成績(jī)是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核,在這8人中,記成績(jī)不優(yōu)良的乙班人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某小學(xué)對(duì)五年級(jí)的學(xué)生進(jìn)行體質(zhì)測(cè)試,已知五年級(jí)一班共有學(xué)生30人,測(cè)試立定跳遠(yuǎn)的成績(jī)用莖葉圖表示如下(單位:cm):
男生成績(jī)?cè)?75cm以上(包括175cm)定義為“合格”,成績(jī)?cè)?75cm以下(不包括175cm)定義為“不合格”;
女生成績(jī)?cè)?65cm以上(包括165cm)定義為“合格”,成績(jī)?cè)?65cm以下(不包括165cm)定義為“不合格”
(Ⅰ)在五年級(jí)一班男生中任意選取3人,求至少有2人的成績(jī)是合格的概率;
(Ⅱ)若從五年級(jí)一班成績(jī)“合格”的學(xué)生中選取2人參加復(fù)試,用X表示其中男生的人數(shù),寫(xiě)出X的分布列,并求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合S={x∈R|x+1≥2},T={-2,-1,0,1,2},則集合S∩T中元素的個(gè)數(shù)是(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案