【題目】如圖,在直三棱柱中,,四邊形是邊長為6的正方形,直線與平面所成的角的正切值為3,點為棱上的動點,且.

1)當為何值時,平面?

2)當時,求二面角的正切值.

【答案】1;(2

【解析】

1)取為坐標原點,,,所在的直線分別為,,軸建立空間直線坐標系.利用正方形的性質(zhì)與已知可得:平面,于是平面.得到就是直線與平面平面所成的角,可得,利用,,解出即可.

2)若,設平面的法向量為.利用,可得,又平面的法向量為.利用即可得出.

解:(1)取為坐標原點,,,所在的直線分別為,軸建立空間直線坐標系.

四邊形是邊長為6的正方形,

,

又易知平面,

,又,平面平面

平面

就是直線與平面平面所成的角,

,

,則點,0,,,0,,6,,0,,0,

6,,,0,,0

,,

解得,由于

故當時,平面

2)若,則點,0,,0,,6,

設平面的法向量為

,得

,得,1,,又平面的法向量為1,

設二面角的大小為,則,

,

即二面角的正切值為2

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】利用一半徑為4cm的圓形紙片(圓心為O)制作一個正四棱錐.方法如下:

(1)O為圓心制作一個小的圓;

(2)在小的圓內(nèi)制作一內(nèi)接正方形ABCD;

(3)以正方形ABCD的各邊向外作等腰三角形,使等腰三角形的頂點落在大圓上(如圖);

(4)將正方形ABCD作為正四棱錐的底,四個等腰三角形作為正四棱錐的側(cè)面折起,使四個等腰三角形的頂點重合,問:要使所制作的正四棱錐體積最大,則小圓的半徑為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的方程為,離心率,且短軸長為4.

求橢圓的方程;

已知,,若直線l與圓相切,且交橢圓ECD兩點,記的面積為,記的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校在2013年的自主招生考試成績中隨機抽取40名學生的筆試成績,按成績共分成五組:第1[75,80),第2[80,85),第3[85,90),第4[90,95),第5[95,100],得到的頻率分布直方圖如圖所示,同時規(guī)定成績在85分以上的學生為優(yōu)秀,成績小于85分的學生為良好,且只有成績?yōu)?/span>優(yōu)秀的學生才能獲得面試資格.

1)求出第4組的頻率,并補全頻率分布直方圖;

2)根據(jù)樣本頻率分布直方圖估計樣本的中位數(shù)與平均數(shù);

3)如果用分層抽樣的方法從優(yōu)秀良好的學生中共選出5人,再從這5人中選2人,那么至少有一人是優(yōu)秀的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a35a42a23,又等比數(shù)列{bn}中,b13且公比q3.

1)求數(shù)列{an},{bn}的通項公式;

2)若cnan+bn,求數(shù)列{cn}的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知菱形與直角梯形所在的平面互相垂直,其中,,,的中點

(Ⅰ)求證:

(Ⅱ)求二面角的余弦值;

(Ⅲ)設為線段上一點,,若直線與平面所成角的正弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某班學生喜歡數(shù)學是否與性別有關(guān),對本班人進行了問卷調(diào)查得到了如下的列聯(lián)表,已知在全部人中隨機抽取人抽到喜歡數(shù)學的學生的概率為.

喜歡數(shù)學

不喜歡數(shù)學

合計

男生

女生

合計

1)請將上面的列聯(lián)表補充完整(不用寫計算過程);

2)能否在犯錯誤的概率不超過的前提下認為喜歡數(shù)學與性別有關(guān)?說明你的理由;

3)現(xiàn)從女生中抽取人進一步調(diào)查,設其中喜歡數(shù)學的女生人數(shù)為,求的分布列與期望.

下面的臨界表供參考:

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)從AB、C,D,E五人中選取三人參加一個重要會議,五人中每個人被選中的機會均相等,求:

1AB都被選中的概率;

2AB至少有一個被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,且短軸長為

(Ⅰ)求橢圓的方程;

(Ⅱ)過點軸的垂線,設點為第四象限內(nèi)一點且在橢圓上(點不在直線上),點關(guān)于的對稱點為,直線與橢圓交于另一點.設為坐標原點,判斷直線與直線的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習冊答案