【題目】已知函數(shù).
(1)用分段函數(shù)的形式表示函數(shù)f(x);
(2)在平面直角坐標(biāo)系中畫出函數(shù)f(x)的圖象;
(3)在同一平面直角坐標(biāo)系中,再畫出函數(shù)g(x)= (x>0)的圖象(不用列表),觀察圖象直接寫出當(dāng)x>0時,不等式f(x)> 的解集.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C:的左、右焦點分別為、,上頂點為A,在x軸負(fù)半軸上有一點B,滿足為線段的中點,且AB⊥。
(I)求橢圓C的離心率;
(II)若過A、B、三點的圓與直線:相切,求橢圓C的方程;
(III)在(I)的條件下,過右焦點作斜率為k的直線與橢圓C交于M,N兩點,在x軸上是否存在點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形?如果存在,求出m的取值范圍;如果不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017-2018學(xué)年安徽省六安市第一中學(xué)高三上學(xué)期第二次月考)已知函數(shù)是偶函數(shù).
(1)求的值;
(2)若函數(shù)的圖象與直線沒有交點,求的取值范圍;
(3)若函數(shù),是否存在實數(shù)使得的最小值為0,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為,坐標(biāo)原點為.橢圓的動弦過右焦點且不垂直于坐標(biāo)軸, 的中點為,過且垂直于線段的直線交射線于點
(I)證明:點在直線上;
(Ⅱ)當(dāng)四邊形是平行四邊形時,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x-3|-|x+1|.
(1)求f(x)的值域;
(2)解不等式:f(x)>0;
(3)若直線y=a與f(x)的圖像無交點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌汽車的店,對最近100份分期付款購車情況進行統(tǒng)計,統(tǒng)計情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
頻數(shù) | 20 | 20 |
(1)若以上表計算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數(shù)量較大)中隨機抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率;
(2)按分層抽樣方式從這100為顧客中抽取5人,再從抽取的5人中隨機抽取3人,記該店在這3人身上賺取的總利潤為隨機變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線經(jīng)過點,其傾斜角為,以原點為極點,以軸為非負(fù)半軸為極軸,與坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線的極坐標(biāo)方程為.
(1)若直線與曲線有公共點,求傾斜角的取值范圍;
(2)設(shè)為曲線上任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在區(qū)間上, , , , , , 均可為一個三角形的三邊長,則稱函數(shù)為“三角形函數(shù)”.已知函數(shù)在區(qū)間上是“三角形函數(shù)”,則實數(shù)的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com