分析 根據正切函數y=tanx的對稱中心為($\frac{kπ}{2}$,0),即可求出答案.
解答 解:根據正切函數的圖象與性質,
令5x+$\frac{π}{4}$=$\frac{kπ}{2}$,k∈Z,
得5x=$\frac{kπ}{2}$-$\frac{π}{4}$,k∈Z,
解得x=$\frac{kπ}{10}$-$\frac{π}{20}$,k∈Z,
所以函數y=$\frac{1}{2}$tan(5x+$\frac{π}{4}$)的對稱中心是($\frac{kπ}{10}$-$\frac{π}{20}$,0),k∈Z.
故答案為:($\frac{kπ}{10}$-$\frac{π}{20}$,0),k∈Z.
點評 本題考查了正切函數的圖象與性質的應用問題,是基礎題目.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | A是銳角 | B. | B是銳角 | ||
C. | C是銳角 | D. | △ABC是鈍角三角形 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1-$\frac{π}{4}$ | B. | $\frac{π}{4}$ | C. | $\frac{π-3}{2}$ | D. | $\frac{π}{2}$-1 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com