分析 (1)由題意可得AD2+BD2=AB2,得AD⊥BD,再由PD⊥底面ABCD,得BD⊥平面PAD,由面面垂直的判定得平面PDA⊥平面PDB;
(2)以D為原點(diǎn)建立如圖3所示空間直角坐標(biāo)系,由已知得到點(diǎn)D、P、A、B、C、E的坐標(biāo),由$\overrightarrow{AP}、\overrightarrow{BE}$的夾角求得異面直線AP與BE所成角的余弦值;
(3)由C,E,P三點(diǎn)共線,得$\overrightarrow{DE}=λ\overrightarrow{DP}+(1-λ)\overrightarrow{DC}$,且0≤λ≤1,從而求出$\overrightarrow{DE}、\overrightarrow{DB}$的坐標(biāo),再求出平面EDB與平面CBD的法向量,結(jié)合二面角E-BD-C的大小為30°列式求得λ,進(jìn)一步得到$\overrightarrow{DE}$的坐標(biāo),則DE的長(zhǎng)可求.
解答 (1)證明:∵底面ABCD是平行四邊形,∴AD=BC=1,
又$BD=\sqrt{3},\;\;AB=2$,滿足AD2+BD2=AB2,
∴AD⊥BD,
又∵PD⊥底面ABCD,∴PD⊥BD,得BD⊥平面PAD,
∵BD?平面PDB,∴平面PDA⊥平面PDB;
(2)解:以D為原點(diǎn)建立如圖3所示空間直角坐標(biāo)系,
則$D(0,\;\;0,\;\;0),\;\;P(0,\;\;0,\;\;\sqrt{3}),\;\;A(1,\;\;0,\;\;0),\;\;B(0,\;\;\sqrt{3},\;\;0)$,$C(-1,\;\;\sqrt{3},\;\;0)$,
∵E是PC邊上的中點(diǎn),∴$E({-\frac{1}{2},\;\;\frac{{\sqrt{3}}}{2},\;\;\frac{{\sqrt{3}}}{2}\;})$,
則$\overrightarrow{AP}=(-1,\;\;0,\;\;\sqrt{3}),\;\;\overrightarrow{BE}=({-\frac{1}{2},\;\;-\frac{{\sqrt{3}}}{2},\;\;\frac{{\sqrt{3}}}{2}\;})$,
∴cos<$\overrightarrow{AP},\overrightarrow{BE}$>=|$\frac{\overrightarrow{AP}•\overrightarrow{BE}}{|\overrightarrow{AP}||\overrightarrow{BE}|}$|=|$\frac{-1×(-\frac{1}{2})+0×(-\frac{\sqrt{3}}{2})+\sqrt{3}×\frac{\sqrt{3}}{2}}{\sqrt{(-1)^{2}+(\sqrt{3})^{2}}×\sqrt{(-\frac{1}{2})^{2}+(-\frac{\sqrt{3}}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}}$=$\frac{2\sqrt{7}}{7}$;
(3)解:由C,E,P三點(diǎn)共線,
得$\overrightarrow{DE}=λ\overrightarrow{DP}+(1-λ)\overrightarrow{DC}$,且0≤λ≤1,
從而有$\overrightarrow{DE}=(λ-1,\;\;\sqrt{3}(1-λ),\;\;\sqrt{3}λ),\;\;\overrightarrow{DB}=(0,\;\;\sqrt{3},\;\;0)$,
設(shè)平面EDB的法向量為$\overrightarrow n=(x,\;\;y,\;\;z)$,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DE}=0}\\{\overrightarrow{n}•\overrightarrow{DB}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{(λ-1)x+\sqrt{3}(1-λ)y+\sqrt{3}λz=0}\\{\sqrt{3}y=0}\end{array}\right.$,
取x=$\sqrt{3}$,得$\overrightarrow n=({\sqrt{3},\;\;0,\;\;\frac{1-λ}{λ}})$,
又平面CBD的法向量可取$\overrightarrow m=(0,\;\;0,\;\;1)$,
∵二面角E-BD-C的大小為30°,∴cos30°=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{\sqrt{3}}{2}$|,解得$λ=\frac{1}{4}$.
∴$\overrightarrow{DE}=(-\frac{3}{4},\frac{3\sqrt{3}}{4},\frac{\sqrt{3}}{4})$,則|DE|=|$\overrightarrow{DE}$|=$\frac{\sqrt{39}}{4}$.
點(diǎn)評(píng) 本題考查平面與平面垂直的判定,考查了利用空間向量求解二面角的平面角,考查計(jì)算能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0或2 | B. | 2或$-\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | sinx | B. | -sinx | C. | cosx | D. | -cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 一解 | B. | 兩解 | C. | 一解或兩解 | D. | 無(wú)解 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{2π}{3}$ | C. | $\frac{3π}{4}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com