求導(dǎo)函數(shù):y=
sinx
x
-2.
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)求導(dǎo)法則和基本初等函數(shù)的求導(dǎo)公式求解即可.
解答: 解:由題意得,y′=(
sinx
x
-2)′=(
sinx
x
)′
=
(sinx)x-(x)′sinx
x2
=
xcosx-sinx
x2
點(diǎn)評:本題考查求導(dǎo)法則和基本初等函數(shù)的求導(dǎo)公式,熟練掌握公式和法則是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α,β,γ是銳角,且tan
α
2
=tan3
r
2
,tanβ=
1
2
tanγ,求證:α+γ=2β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|2≤x<4},B={x|x≥3},則A∪B等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

惠州市某校中學(xué)生籃球隊(duì)假期集訓(xùn),集訓(xùn)前共有6個籃球,其中3個是新球(即沒有用過的球),3個是舊球(即至少用過一次的球).每次訓(xùn)練都從中任意取出2個球,用完后放回.
(1)設(shè)第一次訓(xùn)練時(shí)取到的新球個數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望;
(2)已知第一次訓(xùn)練時(shí)用過的球放回后都當(dāng)作舊球,求第二次訓(xùn)練時(shí)恰好取到1個新球的概率.
參考公式:互斥事件加法公式:P(A∪B)=P(A)+P(B)(事件A與事件B互斥).
獨(dú)立事件乘法公式:P(A∩B)=P(A)•P(B)(事件A與事件B相互獨(dú)立).
條件概率公式:P(B|A)=
P(AB)
P(A)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式,并寫出f(x)的單調(diào)減區(qū)間;
(2)記△ABC的內(nèi)角A,B,C的對邊長分別為a,b,c,若f(A)=1,cosB=
4
5
,a=5,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集為U=R,M={x|x2-x>0},N={x|
x-1
x
<0},則有( 。
A、M∪N=R
B、M∩N=∅
C、∁UN=M
D、∁UN⊆N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=Aisn(ωx+φ),?x1,x2∈R,使f(x1)-f(x2)取得最大值2時(shí),|x1-x2|最小值為π,若f(x)在(
π
4
,
π
3
)
上單調(diào)遞增,在(
π
3
,
π
2
)
上單調(diào)遞減,則f(-
3
)
等于(  )
A、-2B、-1C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同時(shí)投兩個相同的骰子,分別標(biāo)有數(shù)字1、2、3、4、5、6,結(jié)果正面朝上的兩個數(shù)相乘的積不小于20的情形有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|logax|-(
1
2
x(a>0且a≠1)有兩個零點(diǎn)x1、x2,則有( 。
A、0<x1x2<1
B、x1x2=1
C、x1x2>1
D、x1x2的范圍不確定

查看答案和解析>>

同步練習(xí)冊答案