11.給出下列命題:
①存在實(shí)數(shù)α,使sinα•cosα=$\frac{1}{3}$;
②函數(shù)y=sin4x-cos4x的最小正周期是π;
③設(shè)$\overrightarrow a,\overrightarrow b$是兩個(gè)非零向量,若存在實(shí)數(shù)λ,使$\overrightarrow b$=λ$\overrightarrow a$,則|$\overrightarrow a$+$\overrightarrow b$|=|$\overrightarrow a$|-|$\overrightarrow b$|;
④若sin(2x1-$\frac{π}{4}$)=sin(2x2-$\frac{π}{4}$),則x1-x2=kπ,其中k∈Z;
⑤若α、β是第一象限的角,且α>β,則sinα>sinβ.
其中正確命題的序號(hào)是①②.

分析 ①根據(jù)是三角函數(shù)的有界性進(jìn)行判斷,
②根據(jù)三角形的周期公式進(jìn)行求解判斷,
③根據(jù)向量共線和模長(zhǎng)關(guān)系進(jìn)行判斷
④根據(jù)三角函數(shù)的圖象和性質(zhì)進(jìn)行判斷
⑤利用特殊值法進(jìn)行排除判斷.

解答 解::①sinα•cosα=$\frac{1}{2}$sin2α∈[-$\frac{1}{2}$,$\frac{1}{2}$],則存在實(shí)數(shù)α,使sinα•cosα=$\frac{1}{3}$正確;故①正確,
②函數(shù)y=sin4x-cos4x=sin2x-cos2x=-cos2x,則函數(shù)的最小正周期是T=$\frac{2π}{2}$=π;故②正確;
③設(shè)$\overrightarrow a,\overrightarrow b$是兩個(gè)非零向量,若存在實(shí)數(shù)λ,使$\overrightarrow b$=λ$\overrightarrow a$,當(dāng)λ>0時(shí),有|$\overrightarrow a$+$\overrightarrow b$|=|$\overrightarrow a$|+|$\overrightarrow b$|;當(dāng)λ<0時(shí),
有|$\overrightarrow a$+$\overrightarrow b$|=||$\overrightarrow a$|-|$\overrightarrow b$||;故③錯(cuò)誤;
④若sin(2x1-$\frac{π}{4}$)=sin(2x2-$\frac{π}{4}$),則有  2x1-$\frac{π}{4}$=2kπ+2x2-$\frac{π}{4}$,或 2x1-$\frac{π}{4}$=2kπ+π-(2x2-$\frac{π}{4}$),k∈z,
∴x1-x2=kπ,或x1+x2=kπ+$\frac{3π}{4}$,k∈z,故④不正確.
⑤當(dāng)α=390°,β=30°時(shí),滿足α>β,但sinα=sinβ,故α>β,則sinα>sinβ錯(cuò)誤,故⑤錯(cuò)誤,
故答案為:①②

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及三角函數(shù)的圖象和性質(zhì),考查學(xué)生的轉(zhuǎn)化和運(yùn)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知兩直線l1:(a-1)x+2y+1=0與l2:x+ay+1=0平行,則a=( 。
A.2B.-1C.0或-2D.-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在等差數(shù)列{an}中,前n項(xiàng)和為Sn,若a10=18,S5=-15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求S3-S4的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)p:|2x+1|>a,q:$\frac{x-1}{2x-1}$>0,是否存在實(shí)數(shù)a使得p是q的必要不充分條件,若存在求出實(shí)數(shù)a的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=$\frac{{x}^{2}+4}{x}$(x>0)的最小值為( 。
A.2B.3C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.直角△ABC中,C=$\frac{π}{2}$,AC=2.若D為AC中點(diǎn),且sin∠CBD=$\frac{1}{3}$,則BC=$2\sqrt{2}$,tanA=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知2x+2y=6,則2x+y的最大值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)a=log73,$b={log_{\frac{1}{3}}}7$,c=30.7,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.c<b<aC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,AB是圓O的直徑,點(diǎn)C在圓O上,延長(zhǎng)BC到D使BC=CD,過(guò)C作圓O的切線交AD于E.若AB=6,ED=2.
(1)求證:CE⊥AD;
(2)求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案