【題目】設(shè)全集為R,.
(1)求及
(2)若,求實數(shù)a的取值范圍.
【答案】(1)A∩B={x|3<x≤5},R(A∩B)={x|x≤3或x>5},
(2)(﹣∞,]∪[6,+∞)
【解析】
(1)由A={x|2<x≤5},B={x|3<x<8},能求出A∩B及R(A∩B).
(2)由A∩B={x|3<x≤5},(A∩B)∩C=,當(dāng)C=時,a﹣1≥2a,當(dāng)C≠時,或,由此能求出實數(shù)a的取值范圍.
(1)因為A={x|2<x≤5},B={x|3<x<8},
所以A∩B={x|3<x≤5},
R(A∩B)={x|x≤3或x>5}.
(2)因為A∩B={x|3<x≤5},(A∩B)∩C=,
當(dāng)C=時,a﹣1≥2a,解得a≤﹣1;
當(dāng)C≠時,或,
解得﹣1<a或a≥6.
綜上,實數(shù)a的取值范圍是(﹣∞,]∪[6,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)遞減區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司的班車在8:00準(zhǔn)時發(fā)車,小田與小方均在7:40至8:00之間到達(dá)發(fā)車點乘坐班車,且到達(dá)發(fā)車點的時刻是隨機的,則小田比小方至少早5分鐘到達(dá)發(fā)車點的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,點的極坐標(biāo)為,直線經(jīng)過點.曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)過點作直線的垂線交曲線于兩點(在軸上方),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍;
(2)若函數(shù)在上存在兩個極值點,且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: (a﹥b﹥0)的一個焦點與短軸的兩個端點是正三角形的三個頂點,點在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)不過原點O且斜率為的直線l與橢圓E交于不同的兩點A,B,線段AB的中點為M,直線OM與橢圓E交于C,D,證明:|MA|·|MB|=|MC|·|MD|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐A-BCDE中,底面BCDE為矩形,側(cè)面ABC底面BCDE,BC=2,CD=,AB=AC
(1)證明.
(2)設(shè)側(cè)面ABC為等邊三角形,求二面角C-AD-E的余弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com