7.設(shè)函數(shù)f(x)可導(dǎo),則 $\lim_{△x→0}\frac{f(1+△x)-f(1)}{3△x}$等于(  )
A.$\frac{1}{3}$ f′(1)B.3 f′(1)C.f′(1)D.f′(3)

分析 由條件利用函數(shù)在某一點的導(dǎo)數(shù)的定義,求得要求式子的值.

解答 解:函數(shù)f(x)可導(dǎo),則 $\lim_{△x→0}\frac{f(1+△x)-f(1)}{3△x}$=$\frac{1}{3}$•$\underset{lim}{△x→0}\frac{f(1+△x)-f(1)}{△x}$=$\frac{1}{3}$f′(1),
故選:A.

點評 本題主要考查函數(shù)在某一點的導(dǎo)數(shù)的定義,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x,(x≤1)}\\{{x}^{2}-2x+2,(x>1)}\end{array}\right.$,若關(guān)于x的函數(shù)g(x)=f(x)-m有兩個零點,則實數(shù)m的取值范圍是(1,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)$f(x)=({\sqrt{3}sinωx+cosωx})cosωx-\frac{1}{2}({x∈R,ω>0})$.若f(x)的最小正周期為4π.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某大學餐飲中心為了解新生的飲食習慣,在全校一年級學生中進行了抽樣調(diào)查,共調(diào)查了100位學生,其中80位南方學生20位北方學生.南方學生中有60位喜歡甜品,20位不喜歡;北方學生中有10位喜歡甜品,10位不喜歡.
(Ⅰ)根據(jù)以上數(shù)據(jù)繪制一個2×2的列聯(lián)表;
(Ⅱ)根據(jù)列聯(lián)表表中數(shù)據(jù),問是否有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”.
P(K2≥k00.100.050.010.005
k02.7063.8416.6357.879
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=ax3-3x2+1(a∈R),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在△ABC中,已知a=4,b=4$\sqrt{2}$,B=45°,則∠A=30°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.過拋物線y2=4x的焦點作直線交拋物線于A(x1,y1)、B(x2,y2)兩點,若x1+x2=10,則弦AB的長度為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx+$\frac{a}{x}$-ea2(a≠0).
(1)討論函數(shù)f(x)的極值;
(2)當a>0,記函數(shù)f(x)的最小值為g(a),求g(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若函數(shù)y=ln(2x)+$\frac{e}{x}$+a(其中e為自然對數(shù)的底數(shù))的最小值為ln2,則a的值為-2.

查看答案和解析>>

同步練習冊答案