已知命題p:“?x∈[1,2],x2-a≥0”,命題q:“方程x2+2ax+2-a=0有實(shí)數(shù)根”,若命題“¬p∨¬q”是假命題,則實(shí)數(shù)a的取值范圍是( 。
A、a≤-2或a=1
B、a≤-2或1≤a≤2
C、a≥1
D、-2≤a≤1
考點(diǎn):復(fù)合命題的真假
專題:簡易邏輯
分析:先求出命題p,q下的a的取值:由命題p得,a≤x2,所以只要讓a小于等于x2的最小值即可;由命題q得,△≥0,這樣即可求得命題p,q下的a的取值.根據(jù)¬p∨¬q是假命題,得到p,q都是真命題,所以對在命題p,q下求得的a的取值求交集即可.
解答: 解:命題p:?x∈[1,2],x2-a≥0;
∴a≤x2
∵x2在[1,2]上的最小值為1;
∴a≤1;
命題q:方程x2+2ax+2-a=0有實(shí)數(shù)根;
∴△=4a2-4(2-a)≥0,解得a≤-2,或a≥1;
∵¬p∨¬q是假命題;
∴¬p,¬q都是假命題;
∴p,q都是真命題;
∴a的取值范圍是{a|a≤-2,或a=1};
故選A.
點(diǎn)評:本題考查二次函數(shù)在一閉區(qū)間上的最值的求法,一元二次方程的根和判別式的關(guān)系,以及邏輯連接詞¬和∨的定義,及由這兩個邏輯連接詞連接的命題的真假情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
16
-
y2
m
=-1的離心率為
5
3
,則m等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)為(0,1),則此拋物線的方程是( 。
A、y2=2x
B、y2=4x
C、x2=2y
D、x2=4y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=a(x-1)+3(a>0,且a≠1)的圖象一定經(jīng)過定點(diǎn)(  )
A、(1,0)
B、(0,3)
C、(1,3)
D、(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3+loga(x-1)(a>0,a≠1)的反函數(shù)圖象恒過定點(diǎn)( 。
A、(a,1)
B、(3,1)
C、(3,2)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex+e-x
ex-e-x
,下列命題:其中所有正確的命題的序號是( 。
①函數(shù)f(x)的零點(diǎn)為1;
②函數(shù)f(x)的圖象關(guān)于原點(diǎn)對稱;
③函數(shù)f(x)在其定義域內(nèi)是減函數(shù);
④函數(shù)f(x)的值域?yàn)椋?∞,-1)∪(1,+∞).
A、①②B、②③C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a1=5,前11項(xiàng)和的平均數(shù)為55,則a11=( 。
A、15B、60
C、100D、105

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知為虛數(shù)單位,a為實(shí)數(shù),復(fù)數(shù)z=(a-2i)(1+i)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為M,則“a=2”是“點(diǎn)M在坐標(biāo)軸上”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在區(qū)間(0,+∞)上是增函數(shù)的是( 。
A、y=
1
x
B、y=
x
C、y=-3x-2
D、y=(
1
2
x

查看答案和解析>>

同步練習(xí)冊答案