11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}-1,x≤1\\-{log_2}x+1,x>1\end{array}$,則f[f(2)]=0.

分析 直接利用分段函數(shù),由里及外逐步求解即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}-1,x≤1\\-{log_2}x+1,x>1\end{array}$,
則f[f(2)]=f(-log22+1)=f(-1+1)=f(0)=20-1=1-1=0.
故答案為:0.

點評 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.在Rt△ABC中,∠BAC=90°,AB=2,AC=6,D為AC邊上的中點,E為BC邊上一點,且$\overrightarrow{BE}$=$λ\overrightarrow{BC}$(0<λ<1).
(1)當$λ=\frac{1}{2}$時,若$\overrightarrow{AE}$=x$\overrightarrow{BD}$+y$\overrightarrow{AC}$,求x,y的值;
(2)當AE⊥BD時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在曲線y=x3+x-2的切線中,與直線4x-y=1平行的切線方程是4x-y=0或4x-y-4=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設(shè)關(guān)于x的函數(shù)f(x)=2cos2x-2acosx-(2a+1)的最小值為g(a).
(1)試用a寫出g(a)的表達式;
(2)試求g(a)=$\frac{1}{2}$時a的值,并求此時f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在等比數(shù)列中,a1=$\frac{1}{2}$,q=$\frac{1}{2}$,an=$\frac{1}{64}$,則項數(shù)n為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.有6位身高互不相同的學生與一位老師排成一排拍照,現(xiàn)老師排在最中間,學生從中間到兩邊都按身高從高到低排列,則所有的排列方法種數(shù)為( 。
A.26B.A${\;}_{6}^{6}$C.A${\;}_{6}^{3}$D.C${\;}_{6}^{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,PA⊥PC,AB=BC,點M,N分別為PC,AC的中點.求證:
(1)直線PA∥平面BMN;
(2)平面PBC⊥平面BMN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.計算$\int_0^2$f(x)dx,其中,f(x)=$\left\{\begin{array}{l}2x\begin{array}{l},{0≤x<1}\end{array}\\ 5\begin{array}{l},{\begin{array}{l}{\;\;\;1≤x≤2.}{\;}\end{array}}\end{array}\end{array}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=ex+ax-2,其中a∈R,若對于任意的x1,x2∈[1,+∞),且x1<x2,都有x2•f(x1)-x1•f(x2)<a(x1-x2)成立,則a的取值范圍是( 。
A.[1,+∞)B.[2,+∞)C.(-∞,1]D.(-∞,2]

查看答案和解析>>

同步練習冊答案