20.已知$\overrightarrow{AB}$=$\overrightarrow{a}$+5$\overrightarrow$,$\overrightarrow{BC}$=-2$\overrightarrow{a}$+8$\overrightarrow$,$\overrightarrow{CD}$=3$\overrightarrow{a}$-3$\overrightarrow$,則( 。
A.A、B、D三點(diǎn)共線B.A、B、C三點(diǎn)共線C.B、C、D三點(diǎn)共線D.A、C、D三點(diǎn)共線

分析 根據(jù)平面向量的線性運(yùn)算與共線定理,證明$\overrightarrow{AB}$與$\overrightarrow{BD}$共線,即可得出結(jié)論.

解答 解:∵$\overrightarrow{AB}$=$\overrightarrow{a}$+5$\overrightarrow$,$\overrightarrow{BC}$=-2$\overrightarrow{a}$+8$\overrightarrow$,$\overrightarrow{CD}$=3$\overrightarrow{a}$-3$\overrightarrow$,
∴$\overrightarrow{BD}$=$\overrightarrow{BC}$+$\overrightarrow{CD}$=$\overrightarrow{a}$+5$\overrightarrow$,
∴$\overrightarrow{AB}$=$\overrightarrow{BD}$,
∴$\overrightarrow{AB}$與$\overrightarrow{BD}$共線,
∴A、B、D三點(diǎn)共線.
故選:A.

點(diǎn)評(píng) 本題考查了平面向量的線性運(yùn)算與共線定理的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知Sn=n2-1,則a2016=4031.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.集合M={x|x≤1或x≥3},N={x|x≤0或x≥2},則M∩N={x|x≤0或x≥3},M∪N={x|x≤1或x≥2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知定義在R上的函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱,且滿足f(x+2)=f(-x).若當(dāng)x∈[0,1]時(shí),f(x)=3x-1
,則f(log${\;}_{\frac{1}{3}}$10)的值為( 。
A.3B.$\frac{10}{9}$C.$\frac{2}{3}$D.$\frac{10}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中,既不是奇函數(shù),也不是偶函數(shù)的是( 。
A.f(x)=0B.f(x)=2x+$\frac{1}{2^x}$C.f(x)=sinx+xD.f(x)=lg|x|+x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合P={x|1≤x<2},Q={1,2,3},則P∩Q=( 。
A.{1,2}B.{1}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)z=2+i,則$\frac{{z}^{2}-2z}{z-1}$=( 。
A.$\frac{1}{2}+\frac{3}{2}$iB.-$\frac{1}{2}-\frac{3}{2}$iC.-$\frac{1}{2}-\frac{1}{2}$iD.$\frac{1}{2}+\frac{1}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若x,y滿足約束條件$\left\{{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}}\right.$,則$\frac{y}{x-1}$的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ln(x+a)-x,a∈R.
(1)當(dāng)a=-1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若x≥1時(shí),不等式${e^{f(x)}}+\frac{a}{2}{x^2}>1$成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案