10.${∫}_{0}^{1}$2xdx=1.

分析 根據(jù)定積分的計(jì)算法則計(jì)算即可.

解答 解:${∫}_{0}^{1}$2xdx=x2|${\;}_{0}^{1}$=1,
故答案為:1.

點(diǎn)評(píng) 本題考查了定積分的計(jì)算,關(guān)鍵是求出原函數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.變量x、y滿足條件$\left\{\begin{array}{l}x-y+1≤0\\ y≤1\\ x>-1\end{array}\right.$,則z=x+y+1的最大值為( 。
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,已知cos(A+B)=-$\frac{5}{13}$,sinB=$\frac{3}{5}$,求cosA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.身高與體重的關(guān)系可以用________來分析( 。
A.殘差分析B.回歸分析C.二維條形圖D.獨(dú)立檢驗(yàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,a+b=10,cosC是方程2x2-3x-2=0的一個(gè)根,求:
(Ⅰ)cosC的值;
(Ⅱ)△ABC周長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=sinx-2cos2$\frac{x}{2}$.
(1)求f($\frac{π}{4}$)的值;
(2)當(dāng)x∈[0,π]時(shí),求函數(shù)f(x)的值域;
(3)若直線x=x0是函數(shù)y=f(4x)圖象的對(duì)稱軸,且x0∈[0,$\frac{π}{4}$],求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(b>a>0)與兩條平行線l1:y=x+a和l2:y=x-a的交點(diǎn)相連所得到的平行四邊形的面積為8b2,則該雙曲線的離心率為( 。
A.$\frac{\sqrt{6}}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{10}}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過直角坐標(biāo)平面內(nèi)三點(diǎn)O(0,0),A(2,0),B(0,2)的圓的方程為( 。
A.(x+1)2+(y+1)2=1B.(x+1)2+(y+1)2=2C.(x-1)2+(y-1)2=1D.(x-1)2+(y-1)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知實(shí)數(shù)a<-1,函數(shù)f(x)=$\left\{\begin{array}{l}{(-2{x}^{3}+3a{x}^{2}+6ax-4{a}^{2}-6a)•{e}^{x},x≤1}\\{[(6a-1)lnx+x+\frac{a}{x}+15a]•e,x>1}\end{array}\right.$,若?x1,x2∈[a,-a](x1≠x2),[f(x1)-f(x2)](x1-x2)<0,則實(shí)數(shù)a的最大值為( 。
A.-3B.-2C.-1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案