分析 利用同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式求得cosC、sinC、cosB 的值,再利用兩角和差的余弦公式、誘導(dǎo)公式求得cosA的值.
解答 解:△ABC中,∵已知cos(A+B)=-cosC=-$\frac{5}{13}$,
∴A+B為鈍角,且 cosC=$\frac{5}{13}$,sinC=$\sqrt{{1-cos}^{2}C}$=$\frac{12}{13}$,
∵sinB=$\frac{3}{5}$,∴cosB=±$\sqrt{{1-sin}^{2}B}$=±$\frac{4}{5}$.
若cosB=$\frac{4}{5}$,則 cosA=-cos(B+C)=-cosBcosC+sinBsinC=-$\frac{4}{5}•\frac{5}{13}$+$\frac{3}{5}•\frac{12}{13}$=$\frac{16}{65}$;
若cosB=-$\frac{4}{5}$,則 cosA=-cos(B+C)=-cosBcosC+sinBsinC=$\frac{4}{5}•\frac{5}{13}$+$\frac{3}{5}•\frac{12}{13}$=$\frac{56}{65}$.
點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式、兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (9+6$\sqrt{3}$)π | B. | (3+6$\sqrt{3}$)π | C. | (3+2$\sqrt{3}$)π | D. | (1+6$\sqrt{3}$)π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
喜歡數(shù)學(xué) | 不喜歡數(shù)學(xué) | 合計(jì) | |
男生 | 60 | 20 | 80 |
女生 | 10 | 10 | 20 |
合計(jì) | 70 | 30 | 100 |
P(K2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
患病 | 未患病 | 總計(jì) | |
沒服用藥 | 25 | 15 | 40 |
服用藥 | c | d | 40 |
總計(jì) | M | N | 80 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | t | 70 |
A. | 50 | B. | 55 | C. | 56.5 | D. | 55.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3π | B. | π | C. | $\frac{\sqrt{3}}{2}$π | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com